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Abstract
In this note, we show how to solve for the fundamental (or bubble-free) value of
a patent in continuous time using two methods: the method of integrating factor
and the Laplace transform. Not only do these methods deliver a solution, they
also provide conditions for when the solution is unique.
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1 Introduction

Since the 1980’s, there has been a growing academic literature investigating the rela-

tionship between intellectual property rights (IPRs) and innovation (Romer, 1990;

Grossman and Helpman, 1991; Aghion and Howitt, 1992). Harnessing R&D and inno-

vation has been a priority for policymakers, particularly as technological progress is

considered to be the key driver of economic growth in the long run (Solow, 1956).

The production of new ideas or designs generates new knowledge. New knowledge

carries considerable economic value. However, it has features that make it problematic

for the market system to handle properly (Arrow, 1962). Specifically, knowledge is

a public good and public goods have two basic attributes. First, they are non-rival

in consumption. Second, they are ‘non-excludable’ meaning that it is not possible to

prevent others from enjoying it once available. IPRs in general address this problem by

attacking the ‘non-appropriability’ of knowledge that lies at the heart of this market

failure. Specifically, by rewarding innovators with property rights on their discoveries,

patents and copyrights are legal mechanisms that attempt to bring the private benefits

of invention closer in line with the social benefits.

When a new design or blueprint for a computer chip is discovered, the inventor

receives a patent from the government. It is assumed that the patent lasts forever.

The question is, what is the price of a patent for a new design? The answer (assuming

no uncertainty and perfect foresight) is the present discounted value of the profits to

be earned (Romer, 1990).

This note describes two different approaches to solve for the price of a patent in

continuous time: the method of integrating factor and the Laplace transform. Not

3



only do these methods deliver a solution, they also provide conditions for when the

solution is unique.

The remainder of this article is organized as follows. Section II discusses the com-

pensation that an innovator receives (patents) for incurring the fixed cost of R&D

activity in Romer(1990). Sections III and IV explain how we solve for the price of

a patent using, (i) the method of integrating factor, and (ii) the Laplace transform.

Section V concludes.

2 The price of a patent in Romer (1990)

In order to motivate research, successful innovators have to be compensated in some

manner. The basic problem is that the creation of a new design or blueprint is costly

(R&D expenditure) but could then be used in a nonrival way by all potential users

of the design. It would be efficient, ex post, to make the design freely available to all,

but this practice fails to provide the ex ante incentives for further discoveries.

Romer (1990) in his seminal paper considers an institutional setup in which the

inventor of a new design retains a perpetual monopoly right (enforced through explicit

patent protection) over the production and sale of a capital goods that uses his or her

design. The flow of monopoly profits provides the incentive for invention.

Therefore, the price of a patent (PA) is the present value of profit flow i.e.,

PA(t) =

∫ ∞

t

π(s)e−
∫ s
t
r(τ)dτds , (2.1)
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where π(s) is the profit flow of date s and r is the risk-free interest rate. Romer (1990)

exploits the Leibniz’s rule for differentiation of a definite integral, to get1

r(t)PA(t) = π(t) + ṖA(t) . (2.2)

The left-hand side of equation (2.2) is the interest earned from investing, PA, in a

bank; the right-hand side is the profits plus the capital gain or loss that results from

the change in the price of the patent (Jones, 1995). Equation (2.2) is the no arbitrage

condition. In fact, the absence of arbitrage opportunities is a fundamental principle

underlying the modern theory of financial asset pricing.

The reasoning is as follows. Suppose an investor has ‘x’ dollars to invest for 1-year.

He has two options. First, he can put the money in a bank for 1-year and earn the

interest rate, r. Alternatively, he can purchase a patent for 1-year, earn the profits in

that period, and then sell the patent. In equilibrium, it must be the case that the rate

of return from both of these investments is the same. If not, everyone would jump at

the more profitable investment, driving its return down.

Rewriting equation (2.2) yields,

r(t) =
π(t)

PA(t)
+

ṖA(t)

PA(t)
. (2.3)

1The Leibniz formula if the limits of integration are function of x and f(x, y) is a function of two variables
that can be integrated with respect to ‘t’ and differentiated with respect to x:

F
′
(x) =

∫ b(x)

a(x)

fx(x, t)dt + f(x, b(x))b
′
(x) − f(x, a(x))a

′
(x) .

if a(x) = a is a constant and b(x) = x, the rule simplifies to:

F
′
(x) = f(x, x) +

∫ x

a

fx(x, t)dt .
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In steady-state, r is a constant in this model. Therefore, π̇(t)/π(t) = ṖA(t)/PA(t).

Furthermore, the rate of growth of profit equals the growth rate of population (n > 0)

(Jones, 1995).2

Finally, substituting, ṖA(t)/PA(t) = n in equation (2.3) above and rearranging

yields the price of a patent along the balanced growth path i.e.,

PA(t) =
π(t)

r − n
. (2.4)

This equation (the present discounted value of the profits to be earned) gives the price

of a patent along the balanced growth path in these models. It tells us what influences

the price of a patent in equilibrium. A higher r indicates that the present discounted

value of profits is lower which naturally leads to a lower price for the patent.3 In

contrast, if n is higher this would encourage more R&D activity, as the scale of the

economy (market size) is growing quickly, increasing demand for new products and

potential profits. This in turn leads to a higher price for the patent.

2In Romer (1990), population growth is assumed to be zero i.e., n = 0. Therefore, the price of a patent

along the balanced growth path is given by, PA(t) =

(
1

r

)
π(t).

3An alternative way to understand this is to think of r as representing the return a potential investor
could earn by putting their money in a bank for 1-year, rather than purchasing a patent.
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3 Method of Integrating factor

3.1 Integrating factor

Integrating factors are useful for solving Ordinary differential equations (ODE) that

can be expressed in the form,

y′ + P (x)y = Q(x) .

The basic idea is to find some ‘unknown’ function, say M(x) called the "integrating

factor", which we can multiply through our differential equation in order to bring the

left-hand side under a common derivative. For the canonical first-order linear ODE

shown above, the integrating factor is e
∫
P (x)dx.

Let us begin by expressing the no arbitrage condition equation (2.2) in the standard

form,

ṖA(t)− rPA(t) = −π(t) , (3.1)

with initial condition, PA(0) = PA(t0). This is a first-order ODE with a variable

forcing term.

Multiplying equation (3.1) throughout by the integrating factor, M(t), yields

M(t)ṖA(t)−M(t)rPA(t) = −M(t)π(t) . (3.2)
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The left-hand side of equation (3.2) equals,
d

dt

[
M(t)PA(t)

]
, if M(t) = e−

∫
rdt. Thus,

equation (3.2) can be written as,

d

dt

[
M(t)PA(t)

]
= −M(t)π(t) . (3.3)

Integrating both sides with respect to ‘t’ and re-arranging gives,

PA(t) = − 1

M(t)

∫
π(t)M(t)dt− c1

M(t)

= −e
∫
rdt

∫
π(t)e−

∫
rdtdt− c1e

∫
rdt

= −e
∫ t
t0

rdτ
∫ t

t0

π(s)e
−

∫ s
t0

rdτ
ds+ ce

∫ t
t0

rdτ
,

(3.4)

where ‘τ ’ and ‘s’ are dummy variables and c = −c1 (Barro and Sala-i-Martin, 2004).

Finally, setting t = 0 solves for the arbitrary constant, c = PA(t0). Hence the

general solution for this first-order ODE is,

PA(t) = PA(t0)e
∫ t
t0

rdτ − e
∫ t
t0

rdτ
∫ t

t0

π(s)e
−

∫ s
t0

rdτ
ds . (3.5)

Multiply equation (3.5) throughout by, e−
∫ t
t0

rdτ , and rearrange to get,

PA(t0) =

∫ t

t0

π(s)e
−

∫ s
t0

rdτ
ds+ PA(t)e

−
∫ t
t0

rdτ
. (3.6)

The first term on the right-hand side is the fundamental value of the patent. The

second term on the right-hand side is the difference between the market value of the
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patent, PA(t0), and its fundamental value. By definition, this difference represents

a bubble (or non-fundamental solution). Ruling out non-fundamental or extraneous

solution i.e., letting t → ∞, we get,

PA(t0) =

∫ ∞

t0

π(s)e
−

∫ s
t0

rdτ
ds+ lim

t→∞
PA(t)e

−
∫ t
t0

rdτ
. (3.7)

Replacing t by T and t0 by t in equation (3.7) to get,

PA(t) =

∫ ∞

t

π(s)e−
∫ s
t
rdτds . (3.8)

Another way of describing our terminal condition would be as a ‘side’ or ‘transver-

sality’ condition designed to rule out speculative bubbles. We can also see that this

condition will both ensure uniqueness and rule out bubbles. Since profits grow at a

constant rate, n > 0, in steady-state we have,

PA(t) =

∫ ∞

t

π(t)ense−
∫ s
t
rdτds

=
π(t)

r − n
.

(3.9)

Equation (3.9) is the value of the patent along the balanced growth path in Romer

(1990).
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4 Solving for the fundamental value of a patent using

the Laplace transform

4.1 The transform

In this section we discuss and solve the no arbitrage condition using the Laplace

transform. The Laplace transform is a very powerful method to solve certain types

of ODE’s and PDE’s. The transform takes a differential equation and turn it into

an algebraic equation. If the algebraic equation can be solved, applying the inverse

transform gives us our desired solution.

Since the interest rate is a constant, r, and profits are growing at a constant rate,

n > 0, we can write equation (2.2) as,

ṖA(t)− rPA(t) = −π(t0)e
nt , (4.1)

where π(0) = π(t0) > 0, is the initial value of profit.4 Moreover, it is convenient

to express equation (4.1) in the standard form,

ẋ(t)− ax(t) = −π(t0)e
ct , (4.2)

where x(t) = PA(t), a = r, c = n and initial condition x(0) = x(t0).

4We know that the variable π(t) grows at the constant rate n. Thus, π(t) satisfies the differential equation
π̇(t)

π(t)
= n i.e., π̇(t) = nπ(t). The solution for this homogeneous differential equation is, π(t) = π(t0)e

nt.
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Definition of the Laplace transform

Suppose that f is a real- or complex-valued function of the (time) variable t > 0 and

s is a real or complex parameter. We define the Laplace transform of f as

F (s) = L
[
f(t)

]
=

∫ ∞

0

e−stf(t)dt

= lim
τ→∞

∫ τ

0

e−stf(t)dt ,

(4.3)

whenever the limit exists (as a finite number). When it does, the integral (4.3) is said

to converge. The notation of L(f) will be used to denote the Laplace transform of

f , and the integral is the ordinary Riemann (improper) integral.5 The parameter s

belongs to some domain on the real line or in the complex plane.

The symbol L is the Laplace transformation, which acts on functions f = f(t) and

generates a new function, F (s) = L
[
f(t)

]
i.e., transforms the function from time

domain to frequency domain.

5The function f is said to be Riemann integrable if there is a number Iab such that for any ε > 0, there
exists a δ > 0 such that for each partition ∆ of

[
a, b

]
with ∥∆∥ < δ, we have∣∣∣∣∣

n∑
i=1

f(xi)
(
ti − ti−1

)
−Iab

∣∣∣∣∣ < ε ,

for all choices of xi ∈
[
ti−1, ti

]
, i = 1, ..., n. The value Iab is the Riemann integral of f over [a, b] and is

written as

Iab =

∫ b

a

f(t)dt .
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Since the Laplace transform is a linear transform, taking the Laplace transform of

equation (4.2) yields,6

x(s) =
−π(t0)

(s− c)(s− a)
+

x(t0)

s− a
. (4.4)

4.2 Inverse of the Laplace Transform

In order to apply the Laplace transform to physical problems, it is necessary to invoke

the inverse transform. If L
[
f(t)

]
= F (s), then the inverse Laplace transform is denoted

by

L−1
[
F (s)

]
= f(t) , t ≥ 0 ,

which maps the Laplace transform of a function back to the original function.

Theorem 1 For a function F (s), the inverse Laplace transform L−1[F (s)
]
, if it exists,

is unique in the sense that we allow a difference of function values on a set that has zero

Lebesgue measure (meaning: a subset of R that is negligible for integrals).

This result is known as Lerch’s theorem. It says that if we restrict our attention to

functions that are continuous on [0,∞], then the inverse transform, L−1
[
F (s)

]
= f(t),

is uniquely defined. Since the functions we are dealing with are solutions to differential

equations (hence continuous), the above assumption is completely justified.

The algebraic equation (4.4) is in the frequency domain. We would want to get

back to the time domain, as that is what we are interested in. The first term on

6The Laplace transform of the first derivative is, L
[
ẋ(t)

]
= sx(s) − x(0), and the Laplace transform of

the exponential function is, L(ect) =
1

s − c
.
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the right-hand side of equation (4.4) is the product of the Laplace transform of the

individual functions F (s) and G(s). In order to find the inverse transform we exploit

the convolution theorem.

4.3 Convolution

The convolution of two functions, f(t) and g(t), defined for t > 0, is given by the

integral

(f ∗ g)(t) =
∫ t

0

f(T )g(t− T )dT ,

which exists if f and g are, say, piecewise continuous. One of the significant properties

possessed by the convolution in connection with the Laplace transform is that the

Laplace transform of the convolution of two functions is the product of their Laplace

transforms.

Theorem 2 (Convolution) If f and g are piecewise continuous on [0,∞] and of exponential

order α, then

L
[
(f ∗ g)(t)

]
= L

[
f(t)

]
.L
[
g(t)

]
(Re(s) > α) .

Using the convolution theorem in equation (4.4) yields,

x(s) = −π(t0)L(f ∗ g)t +
x(t0)

s− a
. (4.5)
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Taking the inverse Laplace transform of equation (4.5) yields,7

x(t) = L−1
[
x(s)

]
= −π(t0)(f ∗ g)t + x(t0)e

at . (4.6)

Substituting the convolution integral, we get

(f ∗ g)t =
∫ t

T=0

f(T )g(t− T )dT =

∫ t

T=0

ecT .ea(t−T )dT =
1

c− a

[
ect − eat

]
. (4.7)

Substituting equation (4.7) in equation (4.6) gives the general solution for our

differential equation,

x(t) =
−π(t0)

c− a

[
ect − eat

]
+ x(t0)e

at . (4.8)

Finally, multiplying throughout by, e−at, and re-arranging gives,

x(t0) =
π(t0)

c− a

[
e−(a−c)t − 1

]
+ x(t)e−at

or

PA(t0) =
π(t0)

n− r
[e−(r−n)t − 1] + PA(t)e

−rt . (4.9)

The first term on the right-hand side of equation (4.9) is the fundamental value of the

patent i.e., the present discounted value of the future stream of profits. The second

term on the right-hand side is the difference between the market value of the patent

7The inverse transforms of L
[
(f ∗ g)(t)

]
= (f ∗ g)(t) = f(t)g(t).
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PA(t0) and its fundamental valuation. As the solution procedure assumes that there

are no bubbles, letting t → ∞, we get

PA(t0) = −

(
π(t0)

r − n

)[
lim
t→∞

e−(r−n)t − 1

]
+ lim

t→∞
PA(t)e

−rt . (4.10)

Finally, replacing t by T and t0 by t in equation (4.10) to get,

PA(t) =
π(t)

r − n
. (4.11)

This expression gives us the price of a patent along a balanced growth path.

5 Conclusion

In this note we have shown how to solve for the fundamental value of a patent in

continuous time using two methods: the method of integrating factor and the Laplace

transform. We have also discussed the criterion for choosing a unique bubble-free

solution. The criterion we use, namely the terminal or transversality conditions are

widely accepted in practice. The effect of this condition is to ensure a stable path free

of extraneous state variables or bubbles.
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