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MEAN-VARIANCE PORTFOLIO OPTIMIZATION
USING JACKKNIFE EMPIRICAL LIKELIHOOD

ESTIMATION OF TAIL CONDITIONAL VARIANCE

Rupel Nargunam∗ Sudheesh K. K.†

Abstract

This research introduces a nonparametric approach for estimating tail

conditional variance (TCV) at the p-th quantile through the use of Jack-

knife Empirical Likelihood (JEL). TCV functions as a second-moment

indicator of tail risk, offering enhanced understanding of the variability

of extreme losses, surpassing traditional scalar measures such as Condi-

tional Value-at-Risk (CVaR). By utilizing jackknife pseudo-values within

an empirical likelihood framework, we are able to develop robust confi-

dence intervals for TCV without the necessity of specific distributional

assumptions—an essential benefit when addressing financial returns char-

acterized by heavy tails and skewness. The proposed methodology is ap-

plied to mean-variance portfolio analysis, facilitating the construction of

efficient frontiers that explicitly incorporate downside tail volatility. The

findings indicate that the integration of JEL-based inference enhances

both the interpretability and statistical robustness of portfolio risk evalu-

ations, particularly in scenarios marked by model uncertainty and limited

data in the tail.

Keywords: Tail Conditional Variance, Jackknife Empirical Likelihood, Con-

fidence Interval, Mean Variance Portfolio Analysis

JEL codes: G11, C13, C14, C15
∗Madras School of Economics, India.
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1 Introduction

Risk measures are very important tools in actuarial science and finance. The

objective of an actuary or risk manager is to choose a risk measure that is suit-

able for the purpose of internal management or for external regulatory control.

The tail behavior of loss distributions may be a subjective issue depending on

the actuary’s (or risk manager’s) experience and/or preference.

Traditional portfolio theory (Markowitz, 1952) uses variance as a risk mea-

sure. However, this symmetric measure penalizes both gains and losses, prompt-

ing the development of tail-focused metrics that better align with investor con-

cerns. (Rockafellar and Uryasev, 2000) introduced CVaR as a coherent alterna-

tive to Value-at-Risk (VaR), laying the groundwork for more informative tail-

based portfolio risk metrics. Tail Conditional Variance (TCV), like Conditional

Value-at-Risk (CVaR), quantifies the dispersion of extreme losses. Although

TCV is less common in practice, it provides richer information about tail volatil-

ity than scalar measures like CVaR. Further emphasizing the importance of tail

analysis, Happersberger (2020) employed Extreme Value Theory (EVT) to esti-

mate and protect against severe portfolio losses. While not directly employing

empirical likelihood, the work underlines the growing focus on tail risk protection

in modern risk management. However, estimating tail behavior from finite sam-

ples poses a challenge. (Peng and Qi, 2006) developed empirical likelihood-based

confidence intervals specifically for the tail index of heavy-tailed distributions.

Their nonparametric framework was pivotal in enabling reliable inference in tail

estimation, serving as a foundation for later applications of empirical likelihood

to risk metrics like CVaR and TCV. This innovation makes it possible to create

confidence intervals around tail measures, even when distributional assumptions

break down. Their work laid the groundwork for applying EL to tail-focused

risk estimation, such as TCV. Jackknife methods offer a classical approach to
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estimate uncertainty without assuming a distribution. Originally proposed by

(Quenouille, 1949) and expanded by (Tukey, 1958), jackknife resampling is used

to construct pseudo-values which approximate the influence of each observation.

Efron and Tibshirani (1993) showed how jackknife pseudo-values can be inte-

grated into robust inference pipelines, especially when combined with nonpara-

metric likelihood. Jing et al. (2009) applied JEL successfully to a wide range of

estimators, showing its robustness and finite-sample efficiency.

Motivated by these recent developments in risk measures, we develop JEL

based inference to construct confidence intervals for TCV at the p−th quantile

which is distribution free. Empirical likelihood (EL) is a non-parametric infer-

ence tool which makes use of likelihood principle. This inference procedure was

first used by Thomas and Grunkemeier (1975) to obtain the confidence interval

for survival probability when the data contain censored observations. Pioneering

papers by Owen (1990) for finding the confidence interval of regression parame-

ters developed EL into a method that has wide applications in many statistical

areas. Consequently, we maximize the non-parametric likelihood function sub-

ject to some constraints. When the constraints are linear, the maximization

of the likelihood is not difficult. However, when the constraints are based on

nonlinear statistics such as U-statistics with higher degree (≥ 2) kernel the im-

plementation of EL becomes challenging. To overcome this difficulty, Jing et al.

(2009) introduced the jackknife empirical likelihood (JEL) inference, which com-

bines two of the popular non-parametric approaches namely, the jackknife and

the EL approach.

In this paper, we extend the idea of EL-based confidence intervals for the

tail index (Peng and Qi, 2006) to quantifying tail risk measures in portfolio

analysis (Happersberger, 2020) and attempt to develop a non-parametric JEL

estimate of confidence interval for the sample p− quantile for portfolio risk.
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The proposed measure is tested using a numerical example to determine the

portfolio risk following the mean-variance portfolio theory (Markowitz, 1952).

The rest of the paper is structured as follows: In Section 2, we construct the

confidence interval for tail conditional variance using JEL. In Section 3, we

present the results of a simulated study for the proposed method. In Section 4,

we implement the method using real-time data. Section 5 concludes the study.

2 Tail conditional variance

This section describes the construction of JEL-based confidence interval for tail

conditional variance (TCV) at the p-th quantile.

2.1 JEL inference for tail conditional variance

Let X denote a loss random variable. The Conditional Tail Expectation (CTE)

of X at the confidence level l00p%, denoted CTEp is the expected loss given

that the loss exceeds the l00p percentile of the distribution of X

CTEp(X) = E[X|X > ζp],

where ζp is the p quantile defined as ζp = inf{x : F (x) ≥ p}.

For measuring the variability along the right tail of its distribution Valdez

(2004) suggested the tail conditional variance(TCV) risk measure defined as:

θp = TCVp = E[(X − E[(X)2|X > ζp]]. (1)

Next, we express TCVp in a different form, which enables us to find a U-statistics
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based estimator of TCVp. Consider

θp = TCVp = E((X − E[(X)2)|X > ζp) =

∫
ζp

(x− µ)2
f(x)dx

1− p

=
1

1− p

∫ ∞

ζp

(x− µ)2dF (x)

=
1

1− p

∫ ∞

0

(x− µ)2I(x > ζp)dF (x)

=
1

1− p

∫ ∞

0

(x− 2xµ+ µ2)I(x > ζp)dF (x)

=
1

1− p
[E(X2

1I(X1 > ζp))− 2µE(X1I(X1 > ζp)) + µ2(1− p)].

The above equation can be written as

θp = TCVp =
1

1− p
[E(X2

1I(X1 > ζp))−2E(X1X2I(X1 > ζp))+E(X1X2)(1−p)].

(2)

Let X1, X2, . . . , Xm;m ≥ 2 be i.i.d random variables with distribution P

and there exists a real valued measurable function h(x1, x2, . . . , xm) such that,

Ep[h(X1, X2, . . . , Xm)] = θp where θp is an estimable parameter.

Also, h is assumed to be a symmetric function of its arguments, because f is an

unbiased estimator of θp, then the average of f applied to all permutations of

the variables is still unbiased and is in addition symmetric.

That is

h(x1, x2, . . . , xm) =
1

m!

∑
π∈

∏
m

f((x1, x2, . . . , xm).

where the summation is over the group of
∏

m of all permutations of an m−

vector, is obviously symmetric in all the arguments and has the same expecta-

tion under P as does f .

For a sample X1, X2, . . . , Xm of size n ≥ m, from a distribution P and a real-

valued measurable function h(x1, x2, . . . , xm), a U-statistic with kernel h is de-
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fined as:

Un = Un(h) =
(n−m)!

n!

∑
Pm,n

h(Xi1 , Xi2 , . . . , Xim)

Here, from Equation(2), we see that m = 2. Hence, the corresponding U−

statistic measure is

θ̂p = U (2)
n =

1(
n
2

) n−1∑
i=1

n∑
j=i+1

h(Xi, Xj), (3)

which is based on the symmetric kernel,

h(Xi, Xj) =
[X2

1I(X1 > ζp)] + [X2
2I(X2 > ζp)]

2(1− p)

−2X1X2I(X1 > ζp)− 2X1X2I(X2 > ζp) + 2(1− p)X1X2

2(1− p)
.

We then study the asymptotic properties of θ̂p.

Theorem 1 (Consistency)

By definition, θ̂p is a consistent estimator of θp.

Theorem 2 (Convergence in distribution)

If we want a confidence interval for θp, then we need the distribution of θ̂p. Sup-

pose that E(h2(X1, X2, . . . , Xm)) < ∞, then at n → ∞,
√
n(θp − θ̂p) converges

in distribution to a Gaussian random variable with mean 0 and variance m2σ2,

here the variance is 4σ2 and σ2 = V ar(E(h(X1, X2)|X1)).

2.1.1 Estimation of confidence interval

Let σ̂2 be a consistent estimator of σ2. Using Theorem 1, we can obtain a

normal based confidence interval θ̂± σ̂Zα
2
, where Zα

2
is the upper α− percentile
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point of a standard normal random variate. As finding a consistent estimator

of σ2 for most distributions is not easy and the construction of a normal based

confidence interval is very difficult. An alternative method of estimation is

using the empirical likelihood. So, from Equation (3) it is evident that it is a

U− statistic measure with degree 2, hence the empirical likelihood estimation

has non-linear constraints, which make implementation difficult. Since θ̂p is

a U− statistics-based estimator with kernel of degree greater than one, which

results in nonlinear constraints in the optimization problem associated with

empirical likelihood inference. This makes the computation and implementation

of the empirical likelihood method very tedious and leading to motivation of

constructing JEL based confidence interval for θ̂p. The JEL method is the

combined version of jackknife and empirical likelihood method. The key idea of

the JEL method is to turn the statistic of interest into a sample mean based on

the jackknife pseudo-values Jing et al. (2009).

2.1.2 Derivation of JEL measure for θp

Here, the jackknife pseudo-values for θp are given by:

Vk = nθ̂p − (n− 1)θ̂p,k; k = 1, 2, . . . , n,

where θ̂p,k is the estimator of θp obtained using (n−1) observations X1, X2, . . . ,

Xk+1; k = 1, 2, . . . , n. The jackknife estimator, θ̂p,jack of θ̂p is the average of

the pseudo-values and is defined as:

θ̂p,jack =
1

n

n∑
k=1

V̂k (4)

As the psuedo-values are constructed using a U− statistic, Tukey(1958) con-

jectured that the psuedo-values may be treated as though they are independent.
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Further, Shi(1984) showed that V̂k are asymptomatically independent under

some mild conditions. Therefore, the jackknife estimator of θp is a sample aver-

age of approximately independent random variables V̂k. Since Owen’s empirical

likelihood is easy to apply for the sample mean this motivates us to apply it to

the psuedo-values V̂ ′
i s.

Let the probability vector p = (p1, p2, . . . , pn) be such that
∑n

i=1 p1 = 1 and

Pi ≥ 0 for all 1 ≤ i ≤ n. Let Gp(x) =
∑n

i=1 piI(V̂i ≤ x). Consider the mean

functional θ(Gp) =
∑n

i=1 piV̂i and let θp =
∑n

i=1 E(V̂i).

Then the empirical likelihood evaluated at θ is given by

L(θp) = max{
n∏

i=1

pi :

n∑
i=1

pi = 1, θ(Gp) = θp} (5)

So we define the jackknife ratio at θ by

R(θp) =
L(θp)

n−n
= max{

n∏
i=1

(npi) :

n∑
i=1

pi = 1, θ(Gp) = θp}

Using Lagrange multipliers,when

min1≤i≤nV̂i < θp < max1≤i≤nV̂i (6)

we have

pi =
1

n

1

1 + λ(V̂i − θp)
(7)

where λ satisfies

f(λ) =
1

n

n∑
i=1

V̂i − θp

1 + λ(V̂i − θp)
= 0 (8)

After plugging in the pi’s back into Equation (6) and taking the logarithm

of R(θp) we get the nonparametric jackknife empirical loglikelihood ratio
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logR(θp) = −
n∑

i=1

log[1 + λ(V̂i − θp)] (9)

It remains to check whether Wilk’s theorem still holds here that is:

−2logR(θp) → χ2
1 (10)

from which we can construct an approximate (1−α) level confidence interval

for θp.

Using Theorem 2, we obtain the JEL based confidence interval for θp at

100(1− α)% as follows:

CIp = {θp| − 2l(θp) ≤ χ2
1,1−α} (11)

where, χ2
1,1−α is the (1−α)-th percentile point of the chi square distribution

with one degree of freedom. The performance of these is verified in the following

sections through a simulation study and real data.

2.1.3 Coverage probability

The coverage probability represents the probability that the true parameter

value falls within the constructed confidence interval. The coverage error is

defined as the discrepancy between the actual coverage probability and the

nominal value. Confidence intervals with low coverage errors are preferred.

3 Simulation study

In this section, we present results from simulation studies to evaluate the fi-

nite sample performance of the JEL estimator for tail conditional variance,

θ̂p obtained in Equation (3). We simulated 500 times for sample sizes n =
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50, 100, 200, 500 and evaluate the performance of the confidence intervals in

terms of coverage probabilities as presented in Equation (11). The simulation

is carried out using R software.

We simulate observations from the Standard Normal distribution, 2− pa-

rameter Weibull distribution, Gamma distribution and Lognormal distribution.

We present therein results for 95% confidence intervals for θ̂p coverage probabil-

ity (CP) of the confidence intervals. The simulation results of each distribution

mentioned above are given in Tables 1-4.

Table 1: Results for 95% JEL-based CI for TCV: standard normal distribu-
tion

n Coverage Probability
50 0.916
100 0.93
200 0.944
500 0.952

Table 2: Results for 95% JEL based CI for TCV: 2-parameter Weibull distri-
bution (shape=1, scale = 2)

n Coverage Probability
50 0.9
100 0.872
200 0.888
500 0.922

Table 3: Results for 95% JEL based CI for TCV: Gamma distribution
(shape=2, scale = 3)

n Coverage Probability
50 0.854
100 0.866
200 0.916
500 0.936
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Table 4: Results for 95% JEL based CI for TCV: Lognormal distribution
(mean = 50, standard deviation = 10)

n Coverage Probability
50 0.89
100 0.936
200 0.956
500 0.966

From Tables 1-4, we observe that as the sample size increases, the coverage

probabilities tend to the nominal value.

Further Tables 1-4, we can see that the confidence intervals calculated using

the JEL method achieves coverage probability closer to 95%. Simulation results

also show that the JEL based confidence intervals for TCV at the p− quantile

have well-controlled coverage probability.

4 Application of JEL based CI for TCV to Mean-

Variance Portfolio theory

In this section, we implement the JEL based confidence intervals for TCV within

the framework of asset allocation in investments. We illustrate the proposed

measure using the classical mean-variance portfolio analysis by incorporating

tail risk using TCV, and estimate it with nonparametric confidence regions

via JEL. This provides a robust inference framework under non-Gaussian asset

returns.

Consider the investor problem of determining the proportions to invest in

each of n available assets, which may include a risk-free asset. Suppose that the

rate-of-return, in a single period, for these assets is a random vector represented

by RT = (R1, R2, . . . , Rn). Now if wi denotes the proportion of wealth invested

in asset i, then the portfolio rate of return can be expressed as Rp =
∑n

i=1 wiRi.

To construct the (Markowitz, 1952) mean-variance portfolio, one would solve the

12



following optimization problem:

minw1,w2,...,wn
V ar(Rp);

∑
wi = 1 (12)

subject to: (i) a target rate of return, say µT , that is, E(Rp) = µT , and

(ii) no negative holdings, that is, wi ≥ 0. Instead of minimizing the variance

which is a measure of the portfolio risk, one can minimize the tail variance of

the portfolio. Hence, when considering tail variance, the conditioning must be

on the downside risk.

4.1 Mean-variance portfolio formulation

The mean-variance portfolio can be formulated as follows: Given m assets and

n observations, let Ri ∈ Rm be the return vector at time i, µ = E[R] and
∑

=

var[R]. Hence, portfolio return rp = wTR, where w ∈ Rm is the weight, mean

portfolio return µp = wTµ and variance of the portfolio return is σ2
p = wT

∑
w.

The tail conditional variance of portfolio returns below the VaR threshold at

level α is

TCVα(w) = V ar[wTR|wTR ≤ V aRα] (13)

4.2 Estimation of T̂CV α

Given the observed set of portfolio returns {rp1, rp2, . . . , rpn}, the empirical VaR

at level α is

q̂α = Quantileα({rpi}) (14)

The select observations in the left tail are denoted as τα = {rpi|rpi ≤ q̂α},

the sample T̂CV α is computed as:

T̂CV α =
1

|τα|
∑

rpi∈τα

(rpi − r̄τα)
2 (15)
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4.3 Estimation of JEL based confidence interval for T̂CV α

For each observation i = 1, 2, . . . , n, leave out rpi, compute T̂CV α(−i) using

remaining (n − 1) returns. The jackknife psuedo values T̂CV α(−i) are stored

as θ̂(i), i = 1, 2, . . . , n.

The empirical likelihood is constructed similar to the methodology given in

Equations (5) to (10) and confidence intervals for T̂CV α such that confidence

bounds for the tail risk of an optimized portfolio are calculated by using JEL to

solve for a candidate weight vector in the mean-variance optimization objective

function: minw TCVα (w) s.t. wTµ = µ0

4.4 Empirical illustration

The proposed measure is illustrated using financial time series and the analysis is

carried out using R software. Consider vector of stock ticker symbols for Apple,

Microsoft, and Google. We use historical stock data for the given symbols from

Yahoo Finance for the specified date range (from Jan 1, 2022 to Dec 31, 2024).

The daily discrete returns for each stock are computed to account for percentage

change from one day to the next and missing values are checked for, typically

from the first row due to return calculation. The average daily return for each

stock is calculated and combined to form a new vector of portfolio returns.

Now, we compute the portfolio weights wi as follows: we generates random,

long-only portfolio weights, that are non-negative and the sum is equal to 1.

This is in line with the constraints given in Equation (12). For each portfolio,

the expected return is computed. The variance of quantile level for the 5% left

tail T̂CV α is computed using Equation (15). The Jackknife pseudo-values for

each observation in the full-sample portfolio returns are computed by leaving

out the i−th observation. The JEL based confidence interval of T̂CV 0.95 for the

portfolio returns is computed. This process is repeated for 1000 portfolios. We
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a plot of the efficient frontier based on T̂CV α and expected return rp, with JEL

confidence intervals. The plot can be interpreted as follows: X-axis represents

T̂CV α, Y-axis represents the expected return rp for each portfolio.

Figure 1: Plot of efficient frontier for 1000 portfolios

Since all points are rendered in the same gray color and there is no legend, it

strongly suggests that the average width of the confidence interval are identical.

The majority of portfolios are clustered between T̂CV α = 0.00005 to 0.00010,

with expected returns around 0.00052 to 0.00056. The frontier has a convex-like

shape on the lower end, widening in dispersion as T̂CV α increases — typical

of risk-return tradeoffs. The efficient frontier appears in a typical shape: low-

risk weighted portfolios on the left, that is, portfolios with lower T̂CV α(w) and

higher-risk weighted portfolios towards the top. The clustering of points on the

left suggests many portfolios share a similar low risk profile, but differ slightly

in return.
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5 Concluding remarks

The existing literature highlights a growing recognition of the limitations of

classical mean-variance portfolio theory in capturing tail risks, particularly in

volatile and non-Gaussian financial environments. Tail-based risk measures,

such as CVaR and TCV, provide a more nuanced view of downside risk that is

directly aligned with investor concerns.

The integration of nonparametric inference techniques—specifically empir-

ical likelihood and jackknife resampling—has enabled more robust estimation

and uncertainty quantification of these tail risk measures. The work of Peng and

Qi (2006) and Jing et al. (2009) illustrates how confidence intervals for tail in-

dices and related risk functionals can be obtained without strong distributional

assumptions. This is particularly relevant in financial settings, where extreme

value behavior and limited tail data present significant challenges.

Furthermore, recent contributions such as Happersberger (2020) emphasize

the practical relevance of tail-focused portfolio construction and underscore the

need for models that account for both performance and estimation reliability. To

the best of our knowledge, this is the first study that focuses on developing JEL

based CI for TCV in the context of mean-variance portfolio analysis. Further,

visualizing expected return vs. TCV (instead of variance) provides a tail-aware

efficient frontier based on risk weights of portfolios.
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