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 A Multi-Criteria Decision-Making Model to Determine 
the Share of Variable Renewable Energy Sources  

 
Salva K K and Zareena Begum Irfan 

 

Abstract 
 
This research study assesses the feasibility of meeting India's forecasted 
electricity demand of 2030 by generating half of it from renewable 
sources with minimal cost and greenhouse gas (GHG) emissions. The 
study examines alternative options for generating the forecasted 
electricity demand for 2030 using a Multi-Objective Optimization (MOO) 
approach. Life Cycle GHG emissions and Levelized Cost of Electricity are 
the input parameters used for optimization. The genetic algorithm in 
MATLAB is used to examine alternative energy pathways, and the best 
option is selected using TOPSIS- a Multi-Criteria Decision Making (MCDM) 
method. The results of the study suggest that the cost-effective and 
emission-reducing approach to meet the forecasted electricity demand of 
2030 is to increase the share of renewable energy sources. Even with the 
share of renewable energy remaining at the current level of 2022, 
optimization can reduce costs by 26.5% and emissions by 87% compared 
to the business-as-usual scenario. Findings of this study have important 
implications for understanding the feasibility of India's renewable energy 
target and its potential impact on cost and emission. 
 

Keywords: Multi-objective optimization, Multi-Criteria Decision Making, 
Life cycle Emission, Levelized Cost of Electricity, Renewable 
and Non-Renewable energy 
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INTRODUCTION 

India, as the third-largest global emitter of CO2, has a significant role to 

play in addressing ongoing climatic issues. During the period 2012-2021 

India’s emission increased by 3.8% per annum  and is projected to 

increase further in the coming years (1).  It is mentioned in India's 3rd 

Biennial Update Report that energy sector contributed 75% to the 

nation's total emissions. Within the energy sector, electricity production 

stood out as the dominant contributor, accounting for 53% of the sector's 

emissions and 40% of the total emissions (2). Consequently, the energy 

sector has gained particular attention in India's climate actions and the 

related targets. 

 

India's power sector includes conventional sources like coal, 

natural gas, oil, hydro, and nuclear energy, along with unconventional 

sources like wind, solar, and bio-waste. However, India continues to 

heavily rely on thermal sources, primarily on coal. As of October 2022, 

fossil fuel sources accounted for approximately 57% of the country's 

installed electricity generation capacity (3). Nevertheless, India has been 

actively accelerating its clean energy transition by reducing reliance on 

fossil fuels and promoting renewable energy sources. As of 2021, India 

ranked fourth in both wind and solar power capacity, as well as overall 

renewable power installed capacity (4). India has set an ambitious target 

to derive 50% of its energy requirement from renewable energy sources 

by 2030. 

 

India's energy demand has been steadily increasing, more than 

doubling since 2000. The 29th Electric Power Survey of Central Electricity 

Authority (CEA) projected India's electricity demand to reach 

2,172,304,000 MWh in 2030 (5). It is crucial to meet the growing energy 

demand, however, the pressing climate issues and India's growing share 

of global emissions necessitate the identification of pathways to meet the 

forecasted demand with minimal impact on the climate and the 

environment. Therefore, the objective of this research paper is to explore 
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alternative options to meet the forecasted electricity demand and the 

energy target of 2030 at minimum costs and greenhouse gas (GHG) 

emissions. To achieve this objective, multi-objective optimization method 

will be employed. Additionally, the paper proposes the use of TOPSIS 

(Technique for Order of Preference by Similarity to Ideal Solution) to 

determine the best alternative pathway for sustainably meeting India's 

energy demand and targets. 

 

The paper is organized as follows: Section 2 provides a review of 

the existing literature. Section 3 describes the methodology. Section 4 

presents the empirical findings. Section 5 discusses the results. Finally, 

Section 6 concludes the paper, summarizing the key findings and 

providing policy recommendations for India's sustainable energy future. 

 

LITERATURE REVIEW 

Several studies have used MOO and MCDM methods to investigate 

optimal electricity generation options and sustainability considerations in 

various regions. Adedeji et. al. (2020)6 utilized MOO and TOPSIS methods 

to analyze electricity generation options in Brunei Darussalam, focusing 

on cost and emission reduction. They found that optimization of energy 

mix resulted in reduced emissions and costs compared to the business-

as-usual scenario. Lee & Chang (2018)7 conducted a renewable energy 

ranking study in Taiwan, highlighting hydro as the top choice, followed 

by solar PV and wind. Ranganath & Sarkar (2021)8 assessed the 

feasibility of solar PV in India, observing a decline in costs. They found 

that the payback period for investment in solar power plants was less 

than 30% of the project's life cycle, affirming the economic viability of 

solar energy in India. Saraswat & Digalwar (2021)9 evaluated energy 

source sustainability in India, using integrated fuzzy approach. They 

highlighted renewable energy sources, particularly solar, wind, and 

hydro, as the most suitable options for India in terms of sustainability. 

Atabaki & Aryanpur (2018)10 developed a sustainable energy plan of 2050 

for Iran, recommending a transition towards solar and wind technologies. 
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They found that by 2050, solar PV gained prominence due to its job 

prospects and cost-effectiveness. 

 

In addition, Ervural et. al. (2018)11 examined Turkey's energy 

planning problem, prioritizing renewable energy potential and investment 

budget. Renewable sources were consistently ranked at the top in all 

scenario analyses. Mulliner et. al. (2016)12 assessed affordability of 

sustainable housing in Liverpool. They concluded that no single MCDM 

method outperforms others and recommended using multiple methods 

for rational results. Şengül et. al. (2015)13 ranked renewable energy 

supply systems in Turkey using Fuzzy TOPSIS, with hydropower stations 

identified as the top-ranked alternative. Wang et. al. (2009)14 reviewed 

MCDM methods used in sustainable energy aspects. They found that 

criteria weights significantly influenced MCDM results, with many studies 

employing equal weights. Finally, Stein (2013)15 compared electricity 

production technologies in the USA, highlighting the superiority of 

renewable sources such as wind and solar PV over non-renewables. They 

recommended prioritizing solar and wind while reducing reliance on coal, 

nuclear, and biomass. 

 

Based on the literature reviewed, it is clear that MOO and MCDM 

methods are commonly used in the energy sector for various purposes. 

Given India's goals to meet electricity demand, reduce emissions, and 

address climate change, these methods can help identify the best 

approach that achieves all objectives simultaneously. This can improve 

energy planning and resource allocation, leading to a more sustainable 

energy future for India. 

 

METHODOLOGY 

This paper aims to identify the optimal energy source to meet the 

electricity demand and energy target of 2030. The analysis comprises 

estimating the units of electricity that would be available in 2030 from 

alternative energy sources and identifying life cycle GHG emissions and 
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the Levelized Cost of Electricity (LCOE) per unit of electricity produced. 

Subsequently, these quantitative estimates, along with forecasted 

electricity demand and energy targets, are used to perform MOO problem 

to examine alternative energy options. The criteria weights were then 

identified using Shannon’s entropy method. Finally, the TOPSIS, a MCDM 

method, was employed to identify the best option for meeting the 

electricity demand and energy target. The research framework of MOO 

and the MCDM method for identifying the optimal energy mix is illustrated 

in Fig. 1 

 

 

Figure 1: Graph Showing the Research Framework of MOO and 

MCDM Methods for Identifying Optimal Energy Mix 

 

Electricity Units Available for 2030 

India primarily relies on thermal sources to meet its electricity demand. 

In the fiscal year 2021-22, coal and lignite contributed to 71.47% of the 

total electricity generation, while gas and nuclear energy accounted for 

3.71% and 3.13%, respectively. Renewable energy sources, including 

wind, solar, biomass, and hydro, collectively contributed to 21.67% of 

the total electricity generation. Collectively, these seven energy sources 
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represented 99.98% of India's total electricity generation. Considering 

this, these seven energy fuels were deemed potential sources for 

meeting the forecasted electricity demand. Therefore, the electricity that 

would be available in 2030 from each of these seven sources was 

estimated. 

 

Multi-Objective Optimization (MOO) 

MOO refers to a mathematical optimization problem where multiple 

objective functions need to be optimized simultaneously. In this study, 

our goal is to meet the projected electricity demand for 2030 while 

simultaneously minimizing the cost of electricity generation and the 

associated GHG emissions. Thus, two of our objective functions are to 

minimize the cost and GHG emissions associated with electricity 

generation. Additionally, we aim to achieve the energy target set for 

2030, which involves maximizing the share of renewable energy (RE) in 

electricity generation. Hence, we have a total of three objective functions 

to optimize. 

 

Life Cycle GHG emission Analysis 

In order to minimize the GHG emissions resulting from electricity 

generation, we assessed the life cycle GHG emissions of each of the 

seven energy sources under consideration. Life cycle GHG emissions refer 

to the total GHG emissions associated with producing a unit (1 MWh) of 

electricity, encompassing every stage of its production and usage. 

 

The two main components of life cycle GHG emissions of 

electricity generation are fugitive emissions and combustion emissions. 

Fugitive emissions are released during the production, processing, 

transmission, storage, and distribution of energy fuel, while combustion 

emissions result from using a particular energy fuel for electricity 

generation. To estimate fugitive and combustion emissions, yearly 

activity data (i.e., the quantity of energy fuel used) at each stage of the 

life cycle is multiplied by the corresponding emission factor (i.e., the 

amount of GHG generated per ton of fuel). The total GHG emission for a 
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particular fuel is obtained by adding up the fugitive and combustion 

emissions at each stage. Finally, to calculate the life cycle GHG emissions, 

the summed value is divided by the electricity generated from that 

particular fuel. The estimation of life cycle GHG emissions can be 

expressed mathematically as follows:   

      

𝐸 = ∑ 𝑄𝑘
𝑛
𝑘=1 ∑ 𝐸𝐹𝑘𝑗𝑗         𝑗 = 𝑥, 𝑦, 𝑧; 𝑘 = 1, … . , 𝑛;                                (1) 

E = Total GHG emitted by an energy fuel  

k indicates different stages in the life cycle of fuel when used in 

electricity generation 

Qk indicates quantity of fuel at each stage k of the life cycle 

j = x, y, z indicates CO2, N2O, and CH4 respectively 

EFkj indicates emission factor of the gases x, y, and z in each stage  

 

Levelized Cost of Electricity (LCOE) 

Analysis of the second objective involved identification of a variable to 

indicate cost of electricity production. So, we used LCOE, a metric used 

to calculate the average cost of building and operating an electricity-

generating asset over its lifetime per unit of total electricity generated. It 

is computed by dividing the net present value of the life cycle cost of the 

electricity-generating asset by the total electricity generated over its 

lifetime.  

 

Optimization of the Objective Functions 

A multi-objective linear programming (MOLP) model is formulated to 

optimize each of the objective functions. The developed model can be 

expressed as follows; 

min Z1 = aX1 + bX2 + cX3 + dX4 + eX5+fX6 + gX7                            (2) 

min Z2 = aY1 + bY2 + cY3 + dY4 + eY5+fY6 + gY7                            (3) 

max Z3 =(d+e+f+g)100/ ef                                                          (4) 

Subject to the constraints;  

a+b+c+d+e+f+g ≥ ef                                                                 (5) 

0 ≤ a ≤ am                                                                                  (6) 

0 ≤ b ≤ bm                                                                                  (7) 
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0 ≤ c ≤ cm                                                                                   (8) 

0 ≤ d ≤ dm                                                                                  (9) 

0 ≤ e ≤ em                                                                                 (10) 

0 ≤ f ≤ fm                                                                                  (11) 

0 ≤ g ≤ gm                                                                                 (12) 

 

Z1, Z2, Z3 are the objective functions to be optimized 

X represents levelized cost of electricity 

Y shows life cycle GHG emission 

ef denoted the forecasted electricity demand  

a, b,....,g is the electricity to be generated from coal, natural gas, 

nuclear, hydro, wind, solar, and biomass energy sources. 

a, b,.....,g subscripted with m indicates the maximum quantity of 

electricity available in 2030 from each of the seven energy sources.  

 

Multi-Criteria Decision-Making (MCDM) Method 

In multi-objective optimization, unlike a single objective optimization 

problem, it is not possible to get a single solution that optimizes all 

objective functions simultaneously. Instead, a set of equally good 

solutions are generated, in which none of the objective function can be 

improved without deteriorating some other objective functions. In the 

present study, the optimization problem provides alternative solutions for 

meeting the electricity demand and achieving the energy target. Manual 

selection among these alternatives is impossible due to conflicting 

criteria; some may offer lower costs but higher emissions, while others 

reduce emissions at potentially higher costs. 

 

To address this, the study employs MCDM method. MCDM is used 

for selecting the best option from a set of alternatives constrained by 

conflicting criteria. Here, the choice between fossil fuels and renewable 

energy (RE) sources presents such conflicts. While fossil fuels offer lower 

costs, they lead to higher emissions. Conversely, RE sources reduce 

emissions but may entail higher costs due to infrastructure constraints. 
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To navigate these trade-offs TOPSIS, a classic MCDM method, is chosen 

to select the best solution from the optimization-generated alternatives. 

 

TOPSIS Method    

This method was proposed by Hwang & Yoon (1981). The idea of the 

method is that the chosen alternative should have the shortest distance 

from the ideal solution and the farthest from the anti-ideal solution. Steps 

involved in TOPSIS is showed in Fig.2, and explained in the following 

session 

 

Figure 2: Steps Involved in TOPSIS Method 

 

Step 1: Formation of Decision matrix 

An MCDM problem with m alternatives (A1, A2… Am) and n criteria (C1, 

C2, ..., Cn) can be expressed in a matrix format as follows;  

                                      Cj 

Ai = [

𝑎11 𝑎12   ⋯ 𝑎1𝑛

⋮ ⋮         ⋱ ⋮
𝑎𝑚1  𝑎𝑚2  ⋯ 𝑎𝑚𝑛

] = [𝑎𝑖𝑗]𝑚×𝑛 

 

Here A represents the alternative and C the criteria. The elements aij 

denote the attribute of ith alternative under jth criterion. 

 

Step 2: Normalize the decision matrix 

Attributes of the decision matrix have to be converted to common 

comparable units by normalizing the matrix.  
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𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

, 𝑖 = 1,2, … … , 𝑚; 𝑗 = 1,2, … … , 𝑛                                  (13) 

 

Step 3: construct the weighted normalized decision matrix 

Calculate the weighted normalized decision matrix by multiplying the 

attribute of the normalized decision matrix by the weight of the 

corresponding criteria. This study assessed criteria weight using 

Shannon’s entropy weight calculation method1.        

      

𝑉𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 ,   ∑ 𝑤𝑗 = 1𝑛
𝑗=1                                                               (14) 

Here wj is the weight of jth criteria. 

 

Step 4: Identify ideal and anti-ideal solution 

From the set of alternatives, the ideal and anti-ideal solution denoted as 

A+ and A- respectively has to be identified as follows; 

𝐴+ = {(max 𝑣𝑖𝑗 |𝑗𝜖𝐽) 𝑜𝑟 (min 𝑣𝑖𝑗 |𝑗𝜖𝐽′)}, 𝑖 = 1,2, … . 𝑚           

= {𝑣1
+, 𝑣2

+, … . , 𝑣𝑛
+}                                                                       (15)          

𝐴− = {(min 𝑣𝑖𝑗 |𝑗𝜖𝐽) 𝑜𝑟 (max 𝑣𝑖𝑗 |𝑗𝜖𝐽′)}, 𝑖 = 1,2, … . 𝑚  

= {𝑣1
−, 𝑣2

−, … . , 𝑣𝑛
−}                                                                       (16) 

 

Where 𝐽 and 𝐽′ are sets of benefit and cost criteria respectively. 

 

If the criterion is benefit, then the ideal solution will be the 

highest value among the available alternative solutions, whereas for the 

cost criteria, it will be the minimum value. Conversely, the minimum value 

among the benefit criteria and the maximum value among the cost 

criteria form the anti-ideal solution. 

 

Step 5: calculate Euclidean distance 

Euclidean distance of each attribute from the ideal and anti-ideal 

solutions has to be identified. Euclidean distance from the ideal solution 

is specified as; 

                                                 
1 This method is explained in the section 3.3.2 
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𝑆𝑖
+ = √∑  (𝑣𝑖𝑗 − 𝑣𝑗

∗)
2𝑛

𝑖=1 , 𝑖 = 1,2, … . . , 𝑚                                         (17) 

 

Here (𝑣𝑖𝑗 − 𝑣𝑗
∗)

2
 is the square of the distance of attribute under 

each criterion from the ideal solution. This distance of each attribute has 

summed up and taken its square root to obtain the Euclidean distance. 

In a similar way, Euclidean distance from the anti-ideal solution has also 

been calculated as shown below below; 

 

𝑆𝑖
− = √∑  (𝑣𝑖𝑗 − 𝑣𝑗

−)
2𝑛

𝑖=1 , 𝑖 = 1,2, … . . , 𝑚                                         (18) 

 

Step 6: calculate relative closeness 

Relative closeness of each of the attributes to the ideal solution is 

assessed as show below. 

𝐶𝑖
∗ =

𝑆𝑖
−

𝑆𝑖
∗+𝑆𝑖

− , 0 < 𝐶𝑖
∗ < 1, 𝑖 = 1,2, … . , 𝑚                                            (19) 

 

If relative closeness is closer to 1, it indicates that the alternative 

solution is closer to the ideal solution. Hence best alternative will have 

higher values for 𝐶𝑖
∗. 

 

Step 6: Ranking of alternatives 

Rank the alternatives based on their relative closeness. Alternatives with 

higher relative closeness will be ranked at the top.  

 

Criteria Weight Calculation 

Weights for different criteria can be assigned using subjective or 

objective methods. Subjective weights rely on expert opinions, while 

objective weights are calculated based on the estimated alternatives and 

their performance with respect to each criterion. Objective weights can 

avoid the subjective bias of decision-makers, thereby enhancing the 

objectivity of the decision-making process (7). The present study utilized 
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an objective method called Shannon's entropy weight calculation, the 

calculation method of which is explained below. 

 

Top of Form 

Step 1: formation of decision matrix  

The decision matrix for alternatives and criteria is the same as the one 

shown under the TOPSIS method, hence, it is not reiterated here. 

 

Step 2: Normalize the decision matrix to render attribute dimensions non-

dimensional for comparison. 

𝑟𝑖𝑗  =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑚
𝑖=1

, i= 1, 2,….., m  (20)

  

Step 3: Compute entropy 

𝑒𝑗 = −𝐾 ∑ 𝑟𝑖𝑗𝑙𝑛𝑟𝑖𝑗
𝑚
𝑖=1 , 𝑗 = 1, 2, … . , 𝑛                                                (21) 

 

Where K = 1/ ln m 

Step 4: Calculate the weights of each criterion as follows 

𝑤𝑗 =
1−𝑒𝑗

∑ 1−𝑒𝑗
𝑛
𝑖=1

, 𝑗 = 1, 2, … . , 𝑛                                                         (22) 

 

EMPIRICAL ANALYSIS 

To estimate the electricity resources that would be generated in 2030 

from the energy sources considered in this study, we assume that the 

installed electricity generation capacity and capacity utilization factor 

(measured with the Plant Load Factor - PLF) will remain consistent with 

the current situation as of June 2022. Data on installed capacity were 

collected from the Ministry of Power16. Data on the capacity utilization 

factor for coal, natural gas, hydro, wind, and solar were obtained from 

MNRE17, for nuclear and biomass, we relied on All India Electricity 

Statistics and estimates from the Center for Science and Environment, 

respectively18,19. The estimated units of electricity available in 2030 are 

presented in Table 1. Installed capacity and capacity utilization factor of 

each power plants in 2022 is shown in column 2 and 3 respectively. Units 
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of electricity that would be generated in 2020 if the existing power plant 

works at the given capacity utilization factor for 24 hours*365 days is 

shown in column 4. 

 

Table 1: Electricity resources available in 2030 

 

Life Cycle GHG Emission Estimates 

Growing energy demand amidst climate change underscores the need of 

a discussion on energy sector. Numerous studies have utilized life cycle 

approach to evaluate emissions from power generation. This study 

adopts a similar approach to estimate GHG emissions (carbon dioxide, 

nitrous oxide, and methane) from coal and natural gas-based power 

plants. 

 

GHG Emission from Coal Power Plants 

GHG emission from any power plant consist of fugitive and combustion 

emission. 

 

Fugitive emission from coal plants 

Coal mining industry in India employs both underground and open-cast 

mining methods, hence to get a complete picture of GHG, emission from 

mining and post-mining activities of these two methods have to 

estimated. Activity data of coal production used in the estimation process 

was of the financial year 2018-19 and is collected from the Coal Directory 

Energy sources Installed 

capacity (MW) 
in 2022 

Capacity 

factor (%) 

Maximum availability 

in 2030 (installed 
capacity *capacity 

factor*8760) 

Coal & lignite 210700 60 1107439200 
Natural Gas 24856 23 50079868.8 

Nuclear 6780 64 38011392 
Hydropower 46850 60 246243600 

wind (land & 

offshore) 

40788 35 125056008 

solar PV 57706 22 111211003.2 

Biomass 10206 17 15198775.2 
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of India 20. Emission factor (country-specific) used are from the existing 

literature21. To estimate emission from underground mines an equal 

weight of 0.33 is given to each of the three categories of coal seams2. 

The estimated methane emissions were converted to CO2-equivalent 

using the Global Warming Potential (GWP) value provided by IPCC in its 

5th assessment report. The emissions from underground and opencast 

mines were combined to determine the total fugitive emissions from coal 

power plants. In 2018-19, 76.16% of the total coal produced in India 

was used in electricity generation, hence this ratio is used to estimate 

the portion of fugitive emissions to which electricity generation is 

responsible for. 

 

Combustion emission from coal 

In addition to coal, all other fuels used must be considered when 

estimating combustion emissions from coal plants. Therefore, activity 

data for various fuels was obtained from the All India Electricity statistics. 

The Net Calorific Value (NCV) and emission factor were sourced from 

Nazar et al21. To calculate the amount of N2O, CH4, and CO2 emitted 

during the combustion process, the activity data of each fuel is multiplied 

by the NCV and emission factor. N2O, and CH4 emissions are then 

converted to CO2 -equivalent using their respective GWP values. Finally, 

emissions from each fuel are aggregated to obtain the total combustion 

emissions from coal power plants. To determine the total GHG emissions 

from coal power plants, the combustion emissions obtained here are 

added to the fugitive emissions calculated earlier. 

 

Life cycle GHG (LCGHG) emission from coal  

Value of GHG emission estimated above is divided by annual electricity 

generated from coal power plants to find out the life cycle GHG 

emission of coal.  

 

                                                 
2 emission factors are available for three categories of coal seems but only a combined figure is 

available for activity data 
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GHG Emission from Natural Gas Power Plants 

Here also total emission is composed of fugitive and combustion 

emission. 

 

Fugitive emission from natural gas 

Emissions from the production, processing, flaring, leakage, and 

distribution of natural gas is considered for estimation. To estimate these 

emissions, activity data (considering domestically produced and imported 

gas) is obtained from the Indian Petroleum & Natural Gas Statistics 2020-

21, and emission factor from Nazer et al21. Methane being the major GHG 

emitted by gas plants its value is estimated using equation 1 and 

converted to CO2-equivalent using GWP value. In 2018-19, 21.93% of 

the total natural gas available was used by power utilities. Hence this 

ratio is used to determine the portion of fugitive emissions for which 

electricity generation is responsible for. 

 

Combustion emission from natural gas 

Activity data of fuel consumption by natural gas power plants is obtained 

from All India Electricity Statistics18, while the NCV and emission factors 

used are from Nazar et al21. The amount of CO2, N2O, and CH4 emitted 

by each fuel is estimated, and N2O and CH4 are converted to CO2-eq 

using their respective GWP values. The combined values these gases for 

each fuel were then added to obtain the total combustion emission from 

natural gas power plants. Finally, total GHG emissions were calculated by 

adding fugitive and combustion emissions together. 

 

Life cycle GHG (LCGHG) emission from natural gas 

Total GHG emission estimate is divided by the annual electricity 

generation from gas plants to obtain its life cycle GHG emission measured 

in tons of CO2-equi/GWh.  

 

Life cycle GHG emission from nuclear and renewable energy  

Regarding the LCGHG emission of renewable (hydro, wind, solar, and 

biomass) and nuclear energy sources this study used the estimates 



15 

provided by the National Renewable Energy Laboratory (NREL)22. NREL 

made a review and harmonization of existing estimates on life cycle 

assessments (LCAs) of electricity generation to reduce uncertainty and 

increase the credibility of the estimates. Therefore, the figures provided 

by NREL can be considered robust for the life cycle emissions of 

renewable and nuclear electricity generation. 

 

Levelized Cost of Electricity  

Table 2: LCGHG and LCOE of Seven Energy Sources 

Energy sources for meeting 2030 
electricity demand 

LCGHG 
(kg/MWh)3 

LCOE 
(USD/MWh) 

Coal/lignite 2264.55 94.61 

GAS 602.22 81 

Nuclear 13 48.17 

hydropower (comprising  21 28.09 

wind (land & offshore) 13 25.43 

solar PV 43 25.38 

Biomass 52 113.59 

 

The large number of power plants for each energy fuel in India 

is a challenge for obtaining sufficient plant-level data to conduct life cycle 

analysis. Additionally, there can be significant variations in the cost of 

electricity generation between different plants. To address this, we used 

India-specific estimates of LCOE provided by the International Energy 

Agency (IEA). These estimates are of the power plants to be 

commissioned by 2025. However, as there is no estimates for gas power 

plants in IEA's analysis, we used the estimated global benchmark LCOE 

of natural gas provided by BloombergNEF 23. Estimates of the LCGHG and 

LCOE of the seven energy sources are presented in Table 2. 

 

 

 

                                                 
3 Tons/GWh is same as kg/MWh 
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Optimization Analysis 

Multi-Objective Linear Programming (MOLP) model is used to explore 

alternative options for meeting the forecasted electricity demand of 2030. 

Optimization is performed using the function gamultiobj in MATLAB 

R2022a version. Different scenarios constrained by the share of RE in 

electricity generation were considered for optimization. The specific 

scenarios and their optimization problem are formulated as follows: 

 

Business as Usual (BAU) Scenario  

In this scenario, no optimization is performed, and it is assumed that the 

installed capacity of electricity generation will remain same as that in 

2022. Hence the electricity consumed from all the sources except coal is 

the maximum available (as showed in Table 2).  Since coal has been the 

main source for electricity generation in India, the remaining portion of 

the projected demand would be met by producing more units of 

electricity from coal. The proportion of 2030 electricity demand that 

would be met with each energy source, along with the resulting cost and 

emissions, are presented in Table 3. 

 

Table 3: Allocation of Forecasted Electricity Demand and 
Associated Costs And Emissions for 2030 in BAU Scenario 

Electricity 

resource 

Proportion of 

2030 
demand 

Electricity 

Generation Cost 
(USD/Mwh) 

Total GHG 

emission (kg/Mwh) 

Coal 1586503353  

 
 

170632681477.47 
 

 

 
 

3635738667419.98 

Natural gas 50079868.8 
Nuclear 38011392 

Wind (land 
& offshore) 

246243600 

Solar PV 125056008 

Hydropower 111211003.2 
Biomass 15198775.2 

 

It is clear that if India continues with BAU scenario, meeting the 

projected electricity demand of 2030 would result in a cost of 170.633 
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billion US dollars and in an emission of 3.635 billion tons of CO2 

equivalent.  

 

Optimization Scenario 1  

Here the objective is to meet the electricity demand of 2030 at minimum 

generation cost and emission. No improvement in renewable energy 

facilities is assumed i.e. as in BAU scenario renewable energy sources will 

contribute around 23% to the forecasted demand. Remaining demand 

will be met from fossil fuels at the minimum cost and emission. Multi-

objective optimization is performed using the following fuzzy. 

 

Min Cost = a94.61+b81+c48.17+d28.09+e25.43+f25.38+g113.59 

Min GHG = a2264.55+b602.22+c13+d21+e13+f43+g52 

Max RE = (d+e+f+g)*100)/2172304000) 

Subject to the constraints;  

a+b+c+d+e+f+g = 2172304000 

(d+e+f+g*100)/2172304000) = 22.9 

Bounds are; 

0 <= a, b, c, d, e, f, g 

(a=coal, b=natural gas, c=nuclear, d=hydro, e=wind, f=solar, and 

g=biomass) 

 

The alternative options obtained for this scenario are presented 

in Table 4. Comparing this outcome with that of the BAU scenario, it is 

evident that the 2030 demand can be met with lower cost and emissions. 

Forecasted demand can be met at a reduced cost of 125.31 billion US 

dollars and at a lower emission of .47 billion tons of CO2-eq, representing 

a decrease of 26.5% and 87% in cost and emissions. 
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Table 4: Alternative Options for Optimization Scenario 1 

No cost (10^6) ghg (10^6) RE (%) Coal Gas Nuclear Hydro Wind solar biomass 

1 125312.5489 468165.6 22.8998 119179657.5 272068843.3 1283602333 231746040.4 9089179.9 64866294.5 15198774.8 

2 125313.0946 467404.5 22.89966 119529458.9 269405329.9 1285918990 231272432.8 8992108.4 64606850.7 15198774.8 

3 125313.2413 467200 22.89962 119623440.1 268689724.2 1286541406 231145188.2 8966028.5 64537145.5 15198775 

4 125313.4287 466938.7 22.89958 119743532.7 267775300.9 1287336748 230982591.5 8932702.5 64448074.6 15198775.1 

5 125313.5782 466730.1 22.89954 119839387.9 267045419.2 1287971582 230852808.7 8906102.2 64376979.1 15198774.6 

6 125313.7149 466539.5 22.89951 119926989.2 266378396.7 1288551741 230734203.7 8881792.9 64312006.8 15198774.9 

7 125313.7429 466500.3 22.8995 119944998.7 266241260.2 1288671019 230709818.2 8876796 64298649.2 15198774.9 

8 125313.93 466239.4 22.89945 120064938.4 265327994 1289465354 230547429.1 8843511.6 64209690.9 15198775.1 

9 125314.2908 465736.3 22.89936 120296151.8 263567453.9 1290996629 230234379.7 8779350.1 64038202.7 15198775 

10 125314.4675 465489.8 22.89932 120409433.8 262704883.6 1291746871 230081003.2 8747914.1 63954182.7 15198775.2 

11 125314.5784 465335.1 22.89929 120480543.5 262163427.6 1292217815 229984725.8 8728180.9 63901441.2 15198774.7 

12 125314.6339 465257.7 22.89928 120516091.9 261892748.1 1292453245 229936597.4 8718315.2 63875075.1 15198775.2 
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Optimization Scenario 2 

This scenario presents a case of expansion in RE facility. The share of RE 

in forecasted electricity demand will increase beyond the 22.9% (case 

that is considered in optimization scenario 1). However, we impose an 

additional constraint that limits RE share to a maximum of 50% of the 

electricity demand. The fuzzy used in the optimization problem is as 

follows: 

 

Min Cost = a94.61+b81+c48.17+d28.09+e25.43+f25.38+g113.59 

Min GHG = a2264.55+b602.22+c13+d21+e13+f43+g52 

Max RE = (d+e+f+g)*100)/2172304000) 

Subject to the constraints; 

a+b+c+d+e+f+g= 2172304000  

22.9 <= (d+e+f+g)*100)/2172304000) <= 50 Bounds; 

0 <= a, b, c, d, e, f, g 

 

Alternative options obtained for this scenario are presented in 

Table 5. Comparing this outcome with that of optimization scenario 

reveals that expansion of RE will leads to cost and emissions reductions. 

Both cost and emissions decrease as the RE share grows, until it reaches 

at 41% of forecasted demand, with cost continuing to decrease until it 

reaches 43.9%. However, further expansion beyond 44% results in 

higher costs and emissions. This could be attributed to the inclusion of 

biomass alongside other RE technologies4. Nevertheless, in comparison 

to BAU scenario, present scenario could attain significant reductions in 

cost and emissions. Expanding the RE facility to contribute 35% allows 

meeting forecasted demand at a cost of US$105.2 billion and emissions 

of 0.14 billion tons of CO2-eq, marking decreases of 38.4% in cost and 

96% in emissions. Even with RE contribution expanding to 49.1% of 

demand, a decline of 15.8% in cost and 65.7% in emissions is achievable. 

 

                                                 
4 With respect to the cost and emission considered in this study biomass has the highest cost of 

electricity production and its GHG is highest among the RE sources.  
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Table 5: Alternative Options for Optimization Scenario 2 

 

No cost 
(10^6) 

ghg (10^6) RE 
(%) 

Coal Gas Nuclear hydro Wind Solar Bio 
mass 

1 105199.91 142533.57 35.40 7934525.32 134965865.42 1260420936.72 172426887.57 122642277.12 328665523.26 145247984.58 

2 111608.32 280418.70 41.30 68310908.63 145149151.30 1061753856.99 278913156.71 327878616.42 78267152.00 212031157.94 

3 117168.17 455821.98 42.05 139023184.27 168225049.38 951678969.75 299843759.47 248587098.22 132091696.33 232854242.59 

4 122567.66 619467.08 43.30 205494346.96 188924881.80 837296690.17 328753528.34 202495594.55 151803886.86 257535071.32 

5 125036.71 691824.00 43.94 234980397.89 197864082.08 785027400.38 343943033.39 185530474.34 155163711.51 269794900.42 

6 127021.37 750538.43 44.53 258958032.63 205087453.82 740887588.69 356620150.91 176502065.41 154307981.48 279940727.06 

7 130315.99 846677.53 45.14 297960488.85 217137013.69 676695535.94 374836673.60 140063392.89 170482860.75 295128034.29 

8 143624.47 1245931.04 49.10 460866930.47 266658247.88 378145806.87 456505350.74 76811163.04 171734705.34 361581795.66 

9 143624.47 1245931.04 49.10 460866930.24 266658247.65 378145806.63 456505351.57 76811159.82 171734706.16 361581797.93 
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Optimization Scenario 3 

Objective of this scenario is to meet the electricity demand along with 

the energy target of 2030. That is to make RE contributing 50% to the 

forecasted demand. The fuzzy used in the optimization problem is 

specified as follows: 

Min Cost = a94.61+b81+c48.17+d28.09+e25.43+f25.38+g113.59 

Min GHG = a2264.55+b602.22+c13+d21+e13+f43+g52 

Max RE = (d+e+f+g)*100)/2172304000) 

Subject to the constraints; 

a+b+c+d+e+f+g= 2172304000  

(d+e+f+g*100)/2172304000) = 50 Bounds; 0 <= a, b, c, d, e, f, g 

 

The alternative options of this scenario are shown in Table 6. 

When comparing this outcome with that of BAU scenario it is clear that 

forecasted demand and the energy target of 2030 could be attained at a 

lower cost and emission. Out of these 10 alternative option declines of 

20.3% in cost and 86.6% in emissions is achievable in first alternative 

compared to the BAU scenario. 
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Table 6: Alternative Options for Optimization Scenario 3 

No cost (10^6) ghg (10^6) re 
(%) 

coal Gas Nuclear Hydro wind solar biomass 

1 135967.262 485175.1607 50 48506621.72 548414959.31 489211233.43 395036696.39 95221993.58 201979851.8 393932643.8 

2 135967.2621 485175.1606 50 48506621.71 548414959.30 489211234.17 395036696.63 95221993.32 201979851.1 393932643.8 

3 135967.2621 485175.16 50 48506621.47 548414959.06 489211234.18 395036696.14 95221994.08 201979850.5 393932644.6 

4 136019.8749 487216.6777 50 49011305.87 549974909.42 487146475.77 395939819.6 94941891.12 201634343.2 393655255 

5 136064.3761 488943.4411 50 49438179.37 551294353.43 485400053.46 396703703.04 94704973.73 201342104.4 393420632.6 

6 136145.9774 492109.7817 50 50220931.26 553713797.26 482197665.24 398104424.58 94270541.43 200806230 392990410.2 

7 136187.6935 493728.4805 50 50621090.19 554950667.16 480560538.09 398820502.33 94048451.41 200532280.6 392770470.2 

8 136259.5594 496517.0632 50 51310456.50 557081460.83 477740208.10 400054111.76 93665848.6 200060339.5 392391574.7 

9 136353.8191 500174.5914 50 52214635.08 559876227.67 474041040.76 401672124.11 93164024.93 199441336.81 391894610.64 

10 136353.8193 500174.591 50 52214634.90 559876227.50 474041040.58 401672123.93 93164023.97 199441335.1 391894614 
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Choice of Best Solution using TOPSIS Method  

TOPSIS an MCDM method is used to select the best option among the 

alternatives obtained from the three scenarios. Prior to TOPSIS, 

Shannon's entropy method is used to determine the criteria weight. 

Weights obtained for the three criteria (i.e., objective functions) of this 

study are shown in Table 7. GHG emissions received the highest weight, 

followed by the share of RE in electricity generation. The cost factor was 

given the least importance. This suggests that it is essential for India to 

minimize GHG emissions while planning for long-term electricity demand. 

 

 

Optimization of the three scenarios resulted in 31 alternative 

options, which were subsequently organized into a decision matrix. Then 

it was normalized using Equation 13. Criteria weight, obtained from 

Shannon's entropy method, were applied to construct weighted 

normalized decision matrix. By employing Equations 15 and 16, the ideal 

and anti-ideal solutions were identified. Subsequently, Equations 17 and 

18 were used to calculate the distance of each alternative from the ideal 

and anti-ideal solutions, denoted as Si
+ and Si

−, respectively. The relative 

closeness of each alternative was determined using Equation 19, denoted 

as Ci
∗. Finally, all 31 alternatives were ranked based on their relative 

closeness values. The alternative with the highest relative closeness 

represents the best option to meet the forecasted electricity demand and 

energy targets. Result obtained from this TOPSIS analysis is presented 

in Table 8. The table shows 31 alternative solutions with their values of 

the objective functions, distances from the ideal and anti-ideal solutions, 

relative closeness, and ranking. 

 

Table 7: Criteria Weights Obtained From Shannon’s Entropy 

Method 

Criteria Weight 

LCOE 0.016749 

LCGHG 0.551459 

RE share 0.431792 
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Table 8: Result of TOPSIS Analysis with Shannon's Entropy 

Weight 

Cri- 

teria 

cost (10^6) ghg (10^6) re 

(%) 

    Si
+ Si

− Ci
∗ Ra 

nk 

21 105199.911 142533.5719 35.4 0.028577 0.188657259 0.86844898 1 

16 111608.3229 280418.6962 41.3 0.028926 0.167598717 0.852814229 2 

13 117168.1702 455821.9826 42.0 0.055349 0.13908966 0.715340043 3 

27 135967.2621 485175.16 50.0 0.058094 0.13944734 0.705913241 4 

30 135967.2621 485175.1606 50.0 0.058094 0.13944734 0.705913241 5 

25 135967.262 485175.1607 50.0 0.058094 0.13944734 0.705913241 6 

23 136019.8749 487216.6777 50.0 0.058441 0.139127287 0.704200212 7 

28 136064.3761 488943.4411 50.0 0.058733 0.138856675 0.702751791 8 

26 136145.9774 492109.7817 50.0 0.05927 0.138360694 0.70009704 9 

29 136187.6935 493728.4805 50.0 0.059544 0.138107256 0.698740479 10 

31 136259.5594 496517.0632 50.0 0.060017 0.137670839 0.696404454 11 

24 136353.8193 500174.591 50.0 0.060637 0.137098797 0.693342371 12 

22 136353.8191 500174.5914 50.0 0.060637 0.137098797 0.693342371 13 

4 125314.6339 465257.7139 22.9 0.076188 0.132352694 0.634659979 14 

8 125314.5784 465335.0624 22.9 0.076198 0.132339581 0.634608344 15 

1 125314.4675 465489.7865 22.9 0.076217 0.13231335 0.634505041 16 

11 125314.2908 465736.2704 22.9 0.076247 0.132271562 0.63434043 17 

6 125313.93 466239.3531 22.9 0.076308 0.132186272 0.634004293 18 

12 125313.7429 466500.324 22.9 0.07634 0.132142029 0.633829838 19 

7 125313.7149 466539.5132 22.9 0.076345 0.132135385 0.633803636 20 

2 125313.5782 466730.1167 22.9 0.076368 0.132103071 0.633676177 21 

9 125313.4287 466938.6858 22.9 0.076393 0.132067711 0.633536669 22 

3 125313.2413 467199.9854 22.9 0.076425 0.132023412 0.633361838 23 

10 125313.0946 467404.4729 22.9 0.07645 0.131988744 0.633224978 24 

5 125312.5489 468165.5852 22.9 0.076543 0.131859709 0.632715266 25 

20 122567.6581 619467.0804 43.3 0.081915 0.113457105 0.580722494 26 

18 125036.7135 691823.998 43.9 0.093879 0.102558819 0.522093485 27 

19 127021.3697 750538.4289 44.5 0.103634 0.094044899 0.475745742 28 

15 130315.9866 846677.5344 45.1 0.119758 0.080460154 0.401862546 29 

17 143624.4682 1245931.036 49.1 0.187076 0.051257651 0.215067052 30 

14 143624.4681 1245931.036 49.1 0.187076 0.051257651 0.215067051 31 

 

Sensitivity Analysis 

Some previous studies6,7 have highlighted that the preference ranking 

through TOPSIS method is highly sensitive to the criteria weight. Hence 

to assess the influence of criteria weights on the ranking, another round 
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of TOPSIS analysis was conducted by assigning an equal weight of 0.33 

to each of the three criteria. Output of this sensitive analysis is presented 

in Table 9.  

 

Table 9: Result of TOPSIS Analysis with Equal Weight 

Crit- 
eria 

cost (10^6) ghg (10^6) Re (%)     Si
+ Si

− Ci
∗ Ra- 

nk 

16 111608.3229 280418.6962 41.3 0.01933545 0.102798 0.841686 1 
21 105199.911 142533.5719 35.4 0.021840502 0.114854 0.840225 2 
13 117168.1702 455821.9826 42.0 0.034380297 0.085978 0.714351 3 
27 135967.2621 485175.16 50.0 0.037525355 0.087241 0.699235 4 
25 135967.262 485175.1607 50.0 0.037525355 0.087241 0.699235 5 
30 135967.2621 485175.1606 50.0 0.037525355 0.087241 0.699235 6 
23 136019.8749 487216.6777 50.0 0.037726363 0.087057 0.697665 7 
28 136064.3761 488943.4411 50.0 0.037896444 0.086901 0.696337 8 
26 136145.9774 492109.7817 50.0 0.038208466 0.086616 0.693903 9 
29 136187.6935 493728.4805 50.0 0.038368052 0.08647 0.692658 10 
31 136259.5594 496517.0632 50.0 0.038643088 0.086219 0.690515 11 
24 136353.8193 500174.591 50.0 0.039004041 0.085891 0.687705 12 
22 136353.8191 500174.5914 50.0 0.039004041 0.085891 0.687705 13 
4 125314.6339 465257.7139 22.9 0.052907337 0.079647 0.600862 14 
8 125314.5784 465335.0624 22.9 0.052912189 0.079639 0.600816 15 
1 125314.4675 465489.7865 22.9 0.052921897 0.079623 0.600725 16 
11 125314.2908 465736.2704 22.9 0.052937368 0.079598 0.60058 17 
6 125313.93 466239.3531 22.9 0.052968968 0.079548 0.600284 18 
12 125313.7429 466500.324 22.9 0.052985372 0.079521 0.60013 19 
7 125313.7149 466539.5132 22.9 0.052987836 0.079517 0.600107 20 
2 125313.5782 466730.1167 22.9 0.052999824 0.079498 0.599995 21 
9 125313.4287 466938.6858 22.9 0.053012945 0.079477 0.599872 22 
3 125313.2413 467199.9854 22.9 0.053029392 0.079451 0.599718 23 
10 125313.0946 467404.4729 22.9 0.053042269 0.07943 0.599597 24 
5 125312.5489 468165.5852 22.9 0.05309024 0.079353 0.599148 25 
20 122567.6581 619467.0804 43.3 0.050053489 0.071154 0.587043 26 
18 125036.7135 691823.998 43.9 0.057190943 0.064978 0.531868 27 
19 127021.3697 750538.4289 44.5 0.063025885 0.060249 0.488737 28 
15 130315.9866 846677.5344 45.1 0.07272764 0.052756 0.420422 29 
17 143624.4682 1245931.036 49.1 0.113333411 0.039174 0.256866 30 
14 143624.4681 1245931.036 49.1 0.113333411 0.039174 0.256866 31 

 

Shannon's entropy method provided highest weightage to GHG 

emission and the lowest to the cost of production. As a result, TOPSIS 

with shannon's criteria weight ranked solution with the lowest GHG 

emission at the top, it results in cost of US$ 105.19 billion and GHG 
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emission of .142 billion tons. Whereas TOPSIS with equal weightage 

ranked a solution that results in cost of US$ 111. 6 billion and emission 

of .28 billion tons at the top. Therefore, it can be concluded that the 

ranking in TOPSIS to some extend is influenced by the criteria weights.  

 

DISCUSSIONS OF THE EMPIRICAL ANALYSIS 

Analysis of alternate scenarios indicates that if India continues to be in 

BAU scenario, with respect to electricity generation and is not choosing 

optimal energy mix, it would incur a cost of 170.632 billion US dollars to 

generate the forecasted electricity demand of 2030. This would also 

result in the emission of 3.635 billion tons of CO2 equivalent. Output of 

one of the optimization scenarios showed that even if India doesn’t 

expand its renewable energy capacity choice of optimal energy mix could 

meet the demand at a lower cost of US $125.31 billion and lower 

emission of .47 billion tons of CO2 equivalent. This indicates that 

optimizing the energy mix alone can reduce the emission and cost 

significantly. 

 

The other two scenarios of this study, scenario that analyzed the 

case of renewable energy expansion until it reaches to 50% of electricity 

demand, and the scenario meant to attain the energy target of 2030, 

also showed that forecasted electricity demand can be attained at a lower 

cost and emission as compared to BAU scenario. 

 

The TOPSIS method used to identify the best options for meeting 

the forecasted electricity demand ranked options from the scenario with 

RE expansion (from 22.9% to 50%) at the top. Second ranked 

alternatives are from the scenario that meet the energy target of 2030. 

This ranking means that if India’s aim is to meet the forecasted demand 

of 2030 it can be attained at lower cost but to increase the share of RE 

to 50% India has to incur some extra cost. However, comparison of the 

scenario attaining 2030 target with BAU scenario showed that expansion 
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of renewable to 50% of the electricity demand could reduce the cost of 

electricity production by 20% and GHG emission by 86%.  

 

In TOPSIS ranking some solutions from the scenario that 

maximizes RE from 22.9% to 50% was ranked at the bottom. This means 

that increasing the share of RE without choosing the optimal energy mix 

will not reduce the overall cost and emission. Hence alternative energy 

mix have to be examined and the best have to be chosen for meeting 

the electricity demand at minimum cost and emission. 

 

Overall, the empirical findings consistently demonstrate that RE 

expansion could reduce both the cost and the emission. This highlights 

the significance of RE as the most viable source for meeting electricity 

demand at minimum cost and environmental impact. However, when 

considering a massive acceleration of RE it is crucial to consider various 

other aspects such as resource availability, infrastructure requirements, 

potential impacts on stakeholders, and others. 

 

Furthermore, it is important to note that the results of the 

TOPSIS analysis to some extents are sensitive to the chosen criteria 

weights. These weights can influence the relative rankings of the 

alternatives. Therefore, it is essential to carefully consider and assign 

appropriate weights to the criteria to ensure accurate and robust 

decision-making. 

 

CONCLUSION 

The application of multi-objective optimization and TOPSIS in the energy 

sector has proven to be highly valuable for policymakers. It facilitates 

effective energy planning, efficient allocation of energy resources, and 

optimal selection of energy portfolios, among other benefits. When 

applied in the Indian context, this method reveals that a significant 

transition to renewable energy would enable India to meet its growing 

energy demand while minimizing the impact on climate and the 
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environment. Such a transition not only yields environmental advantages 

but also reduces the cost of electricity generation due to the advantage 

that renewable energy has in the form of technological advancements, 

economies of scale, and improved financial options. 

 

Comparing the results of multi-objective optimization for 

different scenarios, it becomes evident that the cost of electricity 

generation and greenhouse gas emissions in scenarios with optimal 

energy mix and with renewable energy expansion is lower than that in 

the business-as-usual scenario. This signifies that instead of continuing 

with the current energy portfolio, selecting an optimal portfolio with 

increased share of renewable energy would enable India to meet the 

projected demand at a lower cost and emission. Therefore, it is 

recommended for India to identify the optimal energy portfolio to address 

its growing energy demand. However, achieving energy-related targets 

and facilitating a substantial transition to renewables requires the 

adoption of appropriate measures to tackle the challenges associated 

with renewable energy, considering factors such as high upfront costs, 

infrastructure development, regulatory frameworks, and storage 

solutions. 
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