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A Multi-Criteria Decision-Making Model to Determine
the Share of Variable Renewable Energy Sources

Salva K K and Zareena Begum Irfan
Abstract

This research study assesses the feasibility of meeting India's forecasted
electricity demand of 2030 by generating half of it from renewable
sources with minimal cost and greenhouse gas (GHG) emissions. The
study examines alternative options for generating the forecasted
electricity demand for 2030 using a Multi-Objective Optimization (MOO)
approach. Life Cycle GHG emissions and Levelized Cost of Electricity are
the input parameters used for optimization. The genetic algorithm in
MATLAB is used to examine alternative energy pathways, and the best
option is selected using TOPSIS- a Multi-Criteria Decision Making (MCDM)
method. The results of the study suggest that the cost-effective and
emission-reducing approach to meet the forecasted electricity demand of
2030 is to increase the share of renewable energy sources. Even with the
share of renewable energy remaining at the current level of 2022,
optimization can reduce costs by 26.5% and emissions by 87% compared
to the business-as-usual scenario. Findings of this study have important
implications for understanding the feasibility of India's renewable energy
target and its potential impact on cost and emission.

Keywords . Multi-objective optimization, Multi-Criteria Decision Making,
Life cycle Emission, Levelized Cost of Electricity, Renewable
and Non-Renewable energy
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INTRODUCTION

India, as the third-largest global emitter of CO, has a significant role to
play in addressing ongoing climatic issues. During the period 2012-2021
India’s emission increased by 3.8% per annum and is projected to
increase further in the coming years (1). It is mentioned in India's 3™
Biennial Update Report that energy sector contributed 75% to the
nation's total emissions. Within the energy sector, electricity production
stood out as the dominant contributor, accounting for 53% of the sector's
emissions and 40% of the total emissions (2). Consequently, the energy
sector has gained particular attention in India's climate actions and the
related targets.

India's power sector includes conventional sources like coal,
natural gas, oil, hydro, and nuclear energy, along with unconventional
sources like wind, solar, and bio-waste. However, India continues to
heavily rely on thermal sources, primarily on coal. As of October 2022,
fossil fuel sources accounted for approximately 57% of the country's
installed electricity generation capacity (3). Nevertheless, India has been
actively accelerating its clean energy transition by reducing reliance on
fossil fuels and promoting renewable energy sources. As of 2021, India
ranked fourth in both wind and solar power capacity, as well as overall
renewable power installed capacity (4). India has set an ambitious target
to derive 50% of its energy requirement from renewable energy sources
by 2030.

India's energy demand has been steadily increasing, more than
doubling since 2000. The 29t Electric Power Survey of Central Electricity
Authority (CEA) projected India's electricity demand to reach
2,172,304,000 MWh in 2030 (5). It is crucial to meet the growing energy
demand, however, the pressing climate issues and India's growing share
of global emissions necessitate the identification of pathways to meet the
forecasted demand with minimal impact on the climate and the
environment. Therefore, the objective of this research paper is to explore



alternative options to meet the forecasted electricity demand and the
energy target of 2030 at minimum costs and greenhouse gas (GHG)
emissions. To achieve this objective, multi-objective optimization method
will be employed. Additionally, the paper proposes the use of TOPSIS
(Technique for Order of Preference by Similarity to Ideal Solution) to
determine the best alternative pathway for sustainably meeting India's
energy demand and targets.

The paper is organized as follows: Section 2 provides a review of
the existing literature. Section 3 describes the methodology. Section 4
presents the empirical findings. Section 5 discusses the results. Finally,
Section 6 concludes the paper, summarizing the key findings and
providing policy recommendations for India's sustainable energy future.

LITERATURE REVIEW

Several studies have used MOO and MCDM methods to investigate
optimal electricity generation options and sustainability considerations in
various regions. Adedeji et. a/. (2020)¢ utilized MOO and TOPSIS methods
to analyze electricity generation options in Brunei Darussalam, focusing
on cost and emission reduction. They found that optimization of energy
mix resulted in reduced emissions and costs compared to the business-
as-usual scenario. Lee & Chang (2018)” conducted a renewable energy
ranking study in Taiwan, highlighting hydro as the top choice, followed
by solar PV and wind. Ranganath & Sarkar (2021)® assessed the
feasibility of solar PV in India, observing a decline in costs. They found
that the payback period for investment in solar power plants was less
than 30% of the project's life cycle, affirming the economic viability of
solar energy in India. Saraswat & Digalwar (2021)° evaluated energy
source sustainability in India, using integrated fuzzy approach. They
highlighted renewable energy sources, particularly solar, wind, and
hydro, as the most suitable options for India in terms of sustainability.
Atabaki & Aryanpur (2018)'° developed a sustainable energy plan of 2050
for Iran, recommending a transition towards solar and wind technologies.



They found that by 2050, solar PV gained prominence due to its job
prospects and cost-effectiveness.

In addition, Ervural et. al. (2018)'! examined Turkey's energy
planning problem, prioritizing renewable energy potential and investment
budget. Renewable sources were consistently ranked at the top in all
scenario analyses. Mulliner et. al. (2016)!? assessed affordability of
sustainable housing in Liverpool. They concluded that no single MCDM
method outperforms others and recommended using multiple methods
for rational results. Sengul et a/. (2015)'3 ranked renewable energy
supply systems in Turkey using Fuzzy TOPSIS, with hydropower stations
identified as the top-ranked alternative. Wang et. a/. (2009)* reviewed
MCDM methods used in sustainable energy aspects. They found that
criteria weights significantly influenced MCDM results, with many studies
employing equal weights. Finally, Stein (2013)'> compared electricity
production technologies in the USA, highlighting the superiority of
renewable sources such as wind and solar PV over non-renewables. They
recommended prioritizing solar and wind while reducing reliance on coal,
nuclear, and biomass.

Based on the literature reviewed, it is clear that MOO and MCDM
methods are commonly used in the energy sector for various purposes.
Given India's goals to meet electricity demand, reduce emissions, and
address climate change, these methods can help identify the best
approach that achieves all objectives simultaneously. This can improve
energy planning and resource allocation, leading to a more sustainable
energy future for India.

METHODOLOGY

This paper aims to identify the optimal energy source to meet the
electricity demand and energy target of 2030. The analysis comprises
estimating the units of electricity that would be available in 2030 from
alternative energy sources and identifying life cycle GHG emissions and



the Levelized Cost of Electricity (LCOE) per unit of electricity produced.
Subsequently, these quantitative estimates, along with forecasted
electricity demand and energy targets, are used to perform MOO problem
to examine alternative energy options. The criteria weights were then
identified using Shannon’s entropy method. Finally, the TOPSIS, a MCDM
method, was employed to identify the best option for meeting the
electricity demand and energy target. The research framework of MOO
and the MCDM method for identifying the optimal energy mix is illustrated
in Fig. 1

Estimate electricity
available from
alternative energy
fuels

Estimate Life cycle

GHG emission Identify the best
MOO to identify Identification TOPSIS options for
— alternative enery of criteria - attaining electricity
- ) ! method .
fuel options weight demand and energy|
target

Identify LCOE ~ —

Identify forecasted
electricty demand

Figure 1: Graph Showing the Research Framework of MOO and
MCDM Methods for Identifying Optimal Energy Mix

Electricity Units Available for 2030

India primarily relies on thermal sources to meet its electricity demand.
In the fiscal year 2021-22, coal and lignite contributed to 71.47% of the
total electricity generation, while gas and nuclear energy accounted for
3.71% and 3.13%, respectively. Renewable energy sources, including
wind, solar, biomass, and hydro, collectively contributed to 21.67% of
the total electricity generation. Collectively, these seven energy sources
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represented 99.98% of India's total electricity generation. Considering
this, these seven energy fuels were deemed potential sources for
meeting the forecasted electricity demand. Therefore, the electricity that
would be available in 2030 from each of these seven sources was
estimated.

Multi-Objective Optimization (MOO)

MOO refers to a mathematical optimization problem where multiple
objective functions need to be optimized simultaneously. In this study,
our goal is to meet the projected electricity demand for 2030 while
simultaneously minimizing the cost of electricity generation and the
associated GHG emissions. Thus, two of our objective functions are to
minimize the cost and GHG emissions associated with electricity
generation. Additionally, we aim to achieve the energy target set for
2030, which involves maximizing the share of renewable energy (RE) in
electricity generation. Hence, we have a total of three objective functions
to optimize.

Life Cycle GHG emission Analysis

In order to minimize the GHG emissions resulting from electricity
generation, we assessed the life cycle GHG emissions of each of the
seven energy sources under consideration. Life cycle GHG emissions refer
to the total GHG emissions associated with producing a unit (1 MWh) of
electricity, encompassing every stage of its production and usage.

The two main components of life cycle GHG emissions of
electricity generation are fugitive emissions and combustion emissions.
Fugitive emissions are released during the production, processing,
transmission, storage, and distribution of energy fuel, while combustion
emissions result from using a particular energy fuel for electricity
generation. To estimate fugitive and combustion emissions, yearly
activity data (i.e., the quantity of energy fuel used) at each stage of the
life cycle is multiplied by the corresponding emission factor (i.e., the
amount of GHG generated per ton of fuel). The total GHG emission for a
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particular fuel is obtained by adding up the fugitive and combustion
emissions at each stage. Finally, to calculate the life cycle GHG emissions,
the summed value is divided by the electricity generated from that
particular fuel. The estimation of life cycle GHG emissions can be
expressed mathematically as follows:

E =Ypo10QkX;EFy; j=xy,zk=1,...,n (1)
E = Total GHG emitted by an energy fuel

k indicates different stages in the life cycle of fuel when used in
electricity generation

Q«indicates quantity of fuel at each stage k of the life cycle

j =X, y, z indicates CO2, N20, and CH4 respectively

EFy indicates emission factor of the gases x, y, and z in each stage

Levelized Cost of Electricity (LCOE)

Analysis of the second objective involved identification of a variable to
indicate cost of electricity production. So, we used LCOE, a metric used
to calculate the average cost of building and operating an electricity-
generating asset over its lifetime per unit of total electricity generated. It
is computed by dividing the net present value of the life cycle cost of the
electricity-generating asset by the total electricity generated over its
lifetime.

Optimization of the Objective Functions

A multi-objective linear programming (MOLP) model is formulated to
optimize each of the objective functions. The developed model can be
expressed as follows;

min Z1 = aXi + bX2 + cXz + dX4 + eXs+fXe + gX7 (2)

min Z2 = aY: + bY2 + cY3 + dY4 + eYs+fYe + gY7 3

max Z3 =(d+e+f+g)100/ ef ©)]
Subject to the constraints;

a+b+c+d+e+f+g = ef (5

0<a<am (6)

0<b<bm (7)



0<c<ctm (8)

0<d<dnm (9)
0<ec<en (10)
0<f<fm (11)
0<g<gm (12)

Z1, Z2, Z3 are the objective functions to be optimized

X represents levelized cost of electricity

Y shows life cycle GHG emission

ef denoted the forecasted electricity demand

a, b,....,g is the electricity to be generated from coal, natural gas,
nuclear, hydro, wind, solar, and biomass energy sources.

a, b,.....,g subscripted with m indicates the maximum quantity of
electricity available in 2030 from each of the seven energy sources.

Multi-Criteria Decision-Making (MCDM) Method

In multi-objective optimization, unlike a single objective optimization
problem, it is not possible to get a single solution that optimizes all
objective functions simultaneously. Instead, a set of equally good
solutions are generated, in which none of the objective function can be
improved without deteriorating some other objective functions. In the
present study, the optimization problem provides alternative solutions for
meeting the electricity demand and achieving the energy target. Manual
selection among these alternatives is impossible due to conflicting
criteria; some may offer lower costs but higher emissions, while others
reduce emissions at potentially higher costs.

To address this, the study employs MCDM method. MCDM is used
for selecting the best option from a set of alternatives constrained by
conflicting criteria. Here, the choice between fossil fuels and renewable
energy (RE) sources presents such conflicts. While fossil fuels offer lower
costs, they lead to higher emissions. Conversely, RE sources reduce
emissions but may entail higher costs due to infrastructure constraints.



To navigate these trade-offs TOPSIS, a classic MCDM method, is chosen
to select the best solution from the optimization-generated alternatives.

TOPSIS Method

This method was proposed by Hwang & Yoon (1981). The idea of the
method is that the chosen alternative should have the shortest distance
from the ideal solution and the farthest from the anti-ideal solution. Steps
involved in TOPSIS is showed in Fig.2, and explained in the following
session

Construct weighted
normalized decision |—>
matrix

Formation of decision Normalize the
matrix decision matrix

Identify ideal and
anti-ideal solution

W

Calculate Euclidean 5 Calculate relative

distance closeness —=>| Rank the alternatives

Figure 2: Steps Involved in TOPSIS Method

Step 1: Formation of Decision matrix
An MCDM problem with m alternatives (A1, A2... Am) and n criteria (Cy,
C,, ..., Cn) can be expressed in a matrix format as follows;

G
a.11 .a12 o Qg

A= = [aij]lmxn

am1 Am2 ** Amn

Here A represents the alternative and C the criteria. The elements aij
denote the attribute of it" alternative under j™ criterion.

Step 2: Normalize the decision matrix
Attributes of the decision matrix have to be converted to common
comparable units by normalizing the matrix.



U i=12,mj =12, . .,m (13)

Step 3. construct the weighted normalized decision matrix

Calculate the weighted normalized decision matrix by multiplying the
attribute of the normalized decision matrix by the weight of the
corresponding criteria. This study assessed criteria weight using
Shannon’s entropy weight calculation method?.

Vi' = erij' Z?:l W] =1 (14)
Here w; is the weight of jt" criteria.

Step 4: Identify ideal and anti-ideal solution

From the set of alternatives, the ideal and anti-ideal solution denoted as
A* and A respectively has to be identified as follows;

A* = {(maxv;; |je]) or (minv;; |jeJ)},i=12,...m

={vHvf, ... v} (15)
A = {(min vy |je]) or (max v;; |j6]’)},i =12,...m
={vi, vy, ., v} (16)

Where J and ]’ are sets of benefit and cost criteria respectively.

If the criterion is benefit, then the ideal solution will be the
highest value among the available alternative solutions, whereas for the
cost criteria, it will be the minimum value. Conversely, the minimum value
among the benefit criteria and the maximum value among the cost
criteria form the anti-ideal solution.

Step 5. calculate Euclidean distance

Euclidean distance of each attribute from the ideal and anti-ideal
solutions has to be identified. Euclidean distance from the ideal solution
is specified as;

1 This method is explained in the section 3.3.2



St= %, (v —v)i=12,..,m (17)

Here (v;; — v7)” is the square of the distance of attribute under
each criterion from the ideal solution. This distance of each attribute has
summed up and taken its square root to obtain the Euclidean distance.
In a similar way, Euclidean distance from the anti-ideal solution has also
been calculated as shown below below;

S7 = \/Z?=1 (v =) i=12,.,m (18)

Step 6: calculate relative closeness
Relative closeness of each of the attributes to the ideal solution is
assessed as show below.

Ci*— Si .—’0<Ci*<1;i=1)2!""’m (19)

- *
S;+S;

If relative closeness is closer to 1, it indicates that the alternative
solution is closer to the ideal solution. Hence best alternative will have
higher values for C;'.

Step 6: Ranking of alternatives
Rank the alternatives based on their relative closeness. Alternatives with
higher relative closeness will be ranked at the top.

Criteria Weight Calculation

Weights for different criteria can be assigned using subjective or
objective methods. Subjective weights rely on expert opinions, while
objective weights are calculated based on the estimated alternatives and
their performance with respect to each criterion. Objective weights can
avoid the subjective bias of decision-makers, thereby enhancing the
objectivity of the decision-making process (7). The present study utilized

10



an objective method called Shannon's entropy weight calculation, the
calculation method of which is explained below.

Top of Form

Step 1: formation of decision matrix

The decision matrix for alternatives and criteria is the same as the one
shown under the TOPSIS method, hence, it is not reiterated here.

Step 2: Normalize the decision matrix to render attribute dimensions non-
dimensifonal for comparison.

i=1,2,....,m (20)

aij
ri]' :2?;1]01'1"
Step 3: Compute entropy
ej = —KZ?;lrijlnrij,j = 1,2,....,n (21)

Where K=1/Inm
Step 4: Calculate the weights of each criterion as follows

W= =12, (22)

7Bk 1-ey’

EMPIRICAL ANALYSIS

To estimate the electricity resources that would be generated in 2030
from the energy sources considered in this study, we assume that the
installed electricity generation capacity and capacity utilization factor
(measured with the Plant Load Factor - PLF) will remain consistent with
the current situation as of June 2022. Data on installed capacity were
collected from the Ministry of Power!6. Data on the capacity utilization
factor for coal, natural gas, hydro, wind, and solar were obtained from
MNRE', for nuclear and biomass, we relied on All India Electricity
Statistics and estimates from the Center for Science and Environment,
respectively'®1°. The estimated units of electricity available in 2030 are
presented in Table 1. Installed capacity and capacity utilization factor of
each power plants in 2022 is shown in column 2 and 3 respectively. Units
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of electricity that would be generated in 2020 if the existing power plant
works at the given capacity utilization factor for 24 hours*365 days is
shown in column 4.

Table 1: Electricity resources available in 2030

Energy sources Installed Capacity Maximum availability
capacity (MW) factor (%) in 2030 (installed
in 2022 capacity *capacity

factor*8760)

Coal & lignite 210700 60 1107439200

Natural Gas 24856 23 50079868.8

Nuclear 6780 64 38011392

Hydropower 46850 60 246243600

wind (land & 40788 35 125056008

offshore)

solar PV 57706 22 111211003.2

Biomass 10206 17 15198775.2

Life Cycle GHG Emission Estimates

Growing energy demand amidst climate change underscores the need of
a discussion on energy sector. Numerous studies have utilized life cycle
approach to evaluate emissions from power generation. This study
adopts a similar approach to estimate GHG emissions (carbon dioxide,
nitrous oxide, and methane) from coal and natural gas-based power
plants.

GHG Emission from Coal Power Plants
GHG emission from any power plant consist of fugitive and combustion
emission.

Fugitive emission from coal plants

Coal mining industry in India employs both underground and open-cast

mining methods, hence to get a complete picture of GHG, emission from

mining and post-mining activities of these two methods have to

estimated. Activity data of coal production used in the estimation process

was of the financial year 2018-19 and is collected from the Coal Directory
12



of India 0. Emission factor (country-specific) used are from the existing
literature?!- To estimate emission from underground mines an equal
weight of 0.33 is given to each of the three categories of coal seams?.
The estimated methane emissions were converted to CO2-equivalent
using the Global Warming Potential (GWP) value provided by IPCC in its
5th assessment report. The emissions from underground and opencast
mines were combined to determine the total fugitive emissions from coal
power plants. In 2018-19, 76.16% of the total coal produced in India
was used in electricity generation, hence this ratio is used to estimate
the portion of fugitive emissions to which electricity generation is
responsible for.

Combustion emissfon from coal

In addition to coal, all other fuels used must be considered when
estimating combustion emissions from coal plants. Therefore, activity
data for various fuels was obtained from the All India Electricity statistics.
The Net Calorific Value (NCV) and emission factor were sourced from
Nazar et al?l. To calculate the amount of N20, CHs4, and CO: emitted
during the combustion process, the activity data of each fuel is multiplied
by the NCV and emission factor. N20O, and CH4 emissions are then
converted to CO:z -equivalent using their respective GWP values. Finally,
emissions from each fuel are aggregated to obtain the total combustion
emissions from coal power plants. To determine the total GHG emissions
from coal power plants, the combustion emissions obtained here are
added to the fugitive emissions calculated earlier.

Life cycle GHG (LCGHG) emission from coal

Value of GHG emission estimated above is divided by annual electricity
generated from coal power plants to find out the life cycle GHG
emission of coal.

2 emission factors are available for three categories of coal seems but only a combined figure is
available for activity data
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GHG Emission from Natural Gas Power Plants
Here also total emission is composed of fugitive and combustion
emission.

Fugitive emission from natural gas

Emissions from the production, processing, flaring, leakage, and
distribution of natural gas is considered for estimation. To estimate these
emissions, activity data (considering domestically produced and imported
gas) is obtained from the Indian Petroleum & Natural Gas Statistics 2020-
21, and emission factor from Nazer et al?!. Methane being the major GHG
emitted by gas plants its value is estimated using equation 1 and
converted to CO2-equivalent using GWP value. In 2018-19, 21.93% of
the total natural gas available was used by power utilities. Hence this
ratio is used to determine the portion of fugitive emissions for which
electricity generation is responsible for.

Combustion emission from natural gas

Activity data of fuel consumption by natural gas power plants is obtained
from All India Electricity Statistics'8, while the NCV and emission factors
used are from Nazar et al?l. The amount of CO2, N2O, and CH4 emitted
by each fuel is estimated, and N20 and CH4 are converted to CO2-eq
using their respective GWP values. The combined values these gases for
each fuel were then added to obtain the total combustion emission from
natural gas power plants. Finally, total GHG emissions were calculated by
adding fugitive and combustion emissions together.

Life cycle GHG (LCGHG) emission from natural gas

Total GHG emission estimate is divided by the annual electricity
generation from gas plants to obtain its life cycle GHG emission measured
in tons of CO2-equi/GWh.

Life cycle GHG emission from nuclear and renewable energy
Regarding the LCGHG emission of renewable (hydro, wind, solar, and
biomass) and nuclear energy sources this study used the estimates
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provided by the National Renewable Energy Laboratory (NREL)%2. NREL
made a review and harmonization of existing estimates on life cycle
assessments (LCAs) of electricity generation to reduce uncertainty and
increase the credibility of the estimates. Therefore, the figures provided
by NREL can be considered robust for the life cycle emissions of
renewable and nuclear electricity generation.

Levelized Cost of Electricity
Table 2: LCGHG and LCOE of Seven Energy Sources

Energy sources for meeting 2030 LCGHG LCOE
electricity demand (kg/MWh)3 (USD/MWh)
Coal/lignite 2264.55 94.61

GAS 602.22 81

Nuclear 13 48.17
hydropower (comprising 21 28.09

wind (land & offshore) 13 25.43

solar PV 43 25.38
Biomass 52 113.59

The large number of power plants for each energy fuel in India
is a challenge for obtaining sufficient plant-level data to conduct life cycle
analysis. Additionally, there can be significant variations in the cost of
electricity generation between different plants. To address this, we used
India-specific estimates of LCOE provided by the International Energy
Agency (IEA). These estimates are of the power plants to be
commissioned by 2025. However, as there is no estimates for gas power
plants in IEA's analysis, we used the estimated global benchmark LCOE
of natural gas provided by BloombergNEF 23, Estimates of the LCGHG and
LCOE of the seven energy sources are presented in Table 2.

3 Tons/GWh is same as kg/MWh
15



Optimization Analysis

Multi-Objective Linear Programming (MOLP) model is used to explore
alternative options for meeting the forecasted electricity demand of 2030.
Optimization is performed using the function gamultiobj in MATLAB
R2022a version. Different scenarios constrained by the share of RE in
electricity generation were considered for optimization. The specific
scenarios and their optimization problem are formulated as follows:

Business as Usual (BAU) Scenario

In this scenario, no optimization is performed, and it is assumed that the
installed capacity of electricity generation will remain same as that in
2022. Hence the electricity consumed from all the sources except coal is
the maximum available (as showed in Table 2). Since coal has been the
main source for electricity generation in India, the remaining portion of
the projected demand would be met by producing more units of
electricity from coal. The proportion of 2030 electricity demand that
would be met with each energy source, along with the resulting cost and
emissions, are presented in Table 3.

Table 3: Allocation of Forecasted Electricity Demand and
Associated Costs And Emissions for 2030 in BAU Scenario

Electricity Proportion of Electricity Total GHG

resource 2030 Generation Cost emission (kg/Mwh)
demand (USD/Mwh)

Coal 1586503353

Natural gas 50079868.8

Nuclear 38011392

Wind (land 246243600 170632681477.47 3635738667419.98

& offshore)

Solar PV 125056008
Hydropower 111211003.2
Biomass 15198775.2

It is clear that if India continues with BAU scenario, meeting the
projected electricity demand of 2030 would result in a cost of 170.633
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billion US dollars and in an emission of 3.635 billion tons of CO:
equivalent.

Optimization Scenario 1

Here the objective is to meet the electricity demand of 2030 at minimum
generation cost and emission. No improvement in renewable energy
facilities is assumed i.e. as in BAU scenario renewable energy sources will
contribute around 23% to the forecasted demand. Remaining demand
will be met from fossil fuels at the minimum cost and emission. Multi-
objective optimization is performed using the following fuzzy.

Min Cost = a94.61+b81+c48.17+d28.09+e25.43+f25.38+g113.59
Min GHG = a2264.55+b602.22+c13+d21+e13+f43+g52
Max RE = (d+e+f+g)*100)/2172304000)
Subject to the constraints;
a+b+c+d+e+f+g = 2172304000
(d+e+f+g*100)/2172304000) = 22.9
Bounds are;
0<=a,b,cdefg
(a=coal, b=natural gas, c=nuclear, d=hydro, e=wind, f=solar, and
g=biomass)

The alternative options obtained for this scenario are presented
in Table 4. Comparing this outcome with that of the BAU scenario, it is
evident that the 2030 demand can be met with lower cost and emissions.
Forecasted demand can be met at a reduced cost of 125.31 billion US
dollars and at a lower emission of .47 billion tons of CO2-eq, representing
a decrease of 26.5% and 87% in cost and emissions.
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Table 4: Alternative Options for Optimization Scenario 1

No cost (107°6) ghg (1076) RE (%) Coal Gas Nuclear Hydro Wind solar biomass

1 125312.5489 468165.6 22.8998 119179657.5 272068843.3 1283602333 231746040.4  9089179.9  64866294.5  15198774.8
2 125313.0946 467404.5 22.89966 119529458.9 269405329.9 1285918990 231272432.8 8992108.4 64606850.7 15198774.8
3 125313.2413 467200  22.89962 119623440.1 268689724.2 1286541406 ~ 231145188.2  8966028.5  64537145.5 15198775
4 125313.4287 466938.7 22.89958 119743532.7 267775300.9 1287336748 230982591.5 8932702.5 64448074.6 15198775.1
5 125313.5782 466730.1  22.89954 119839387.9  267045419.2 1287971582  230852808.7  8906102.2  64376979.1 15198774.6
6 125313.7149 466539.5 22.89951 119926989.2 266378396.7 1288551741 230734203.7 8881792.9 64312006.8 15198774.9
7 125313.7429 466500.3 22.8995 119944998.7  266241260.2 1288671019  230709818.2 8876796  64298649.2  15198774.9
8 125313.93 466239.4  22.89945 120064938.4 265327994 1289465354  230547429.1  8843511.6  64209690.9  15198775.1
9 125314.2908 465736.3 22.89936 120296151.8 263567453.9 1290996629 230234379.7 8779350.1 64038202.7 15198775
10 125314.4675 465489.8 22.89932 120409433.8 262704883.6 1291746871 230081003.2 8747914.1 63954182.7 15198775.2
1 125314.5784 465335.1 22.89929 120480543.5 262163427.6 1292217815 229984725.8 8728180.9 63901441.2 15198774.7
12 125314.6339 465257.7 22.89928 120516091.9 261892748.1 1292453245 229936597.4 8718315.2 63875075.1 15198775.2
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Optimization Scenario 2

This scenario presents a case of expansion in RE facility. The share of RE
in forecasted electricity demand will increase beyond the 22.9% (case
that is considered in optimization scenario 1). However, we impose an
additional constraint that limits RE share to a maximum of 50% of the
electricity demand. The fuzzy used in the optimization problem is as
follows:

Min Cost = a94.61+b81+c48.17+d28.09+e25.43+f25.38+g113.59
Min GHG = a2264.55+b602.22+c13+d21+e13+f43+g52

Max RE = (d+e+f+g)*100)/2172304000)

Subject to the constraints;

a+b+c+d+e+f+g= 2172304000

22.9 <= (d+e+f+g)*100)/2172304000) <= 50 Bounds;
0<=a,b,cdefg

Alternative options obtained for this scenario are presented in
Table 5. Comparing this outcome with that of optimization scenario
reveals that expansion of RE will leads to cost and emissions reductions.
Both cost and emissions decrease as the RE share grows, until it reaches
at 41% of forecasted demand, with cost continuing to decrease until it
reaches 43.9%. However, further expansion beyond 44% results in
higher costs and emissions. This could be attributed to the inclusion of
biomass alongside other RE technologies*. Nevertheless, in comparison
to BAU scenario, present scenario could attain significant reductions in
cost and emissions. Expanding the RE facility to contribute 35% allows
meeting forecasted demand at a cost of US$105.2 billion and emissions
of 0.14 billion tons of CO2-eq, marking decreases of 38.4% in cost and
96% in emissions. Even with RE contribution expanding to 49.1% of
demand, a decline of 15.8% in cost and 65.7% in emissions is achievable.

4 With respect to the cost and emission considered in this study biomass has the highest cost of
electricity production and its GHG is highest among the RE sources.
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Table 5: Alternative Options for Optimization Scenario 2

No cost ghg (10r6) RE Coal Gas Nuclear hydro Wind Solar Bio
(1076) (%) mass
1 105199.91 142533.57 35.40 7934525.32 134965865.42 1260420936.72 172426887.57 122642277.12 328665523.26 145247984.58
2 111608.32 280418.70 41.30 68310908.63 145149151.30 1061753856.99 278913156.71 327878616.42 78267152.00 212031157.94
3 117168.17 455821.98 42.05 139023184.27 168225049.38 951678969.75 299843759.47 248587098.22 132091696.33 232854242.59
4 122567.66 619467.08 43.30 205494346.96 188924881.80 837296690.17 328753528.34 202495594.55 151803886.86 257535071.32
5 125036.71 691824.00 43.94 234980397.89 197864082.08 785027400.38 343943033.39 185530474.34 155163711.51 269794900.42
6 127021.37 750538.43 44.53 258958032.63 205087453.82 740887588.69 356620150.91 176502065.41 154307981.48 279940727.06
7 130315.99 846677.53 45.14 297960488.85 217137013.69 676695535.94 374836673.60 140063392.89 170482860.75 295128034.29
8 143624.47 1245931.04 49.10 460866930.47 266658247.88 378145806.87 456505350.74 76811163.04 171734705.34 361581795.66
9 143624.47 1245931.04 49.10 460866930.24 266658247.65 378145806.63 456505351.57 76811159.82 171734706.16 361581797.93
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Optimization Scenario 3

Objective of this scenario is to meet the electricity demand along with
the energy target of 2030. That is to make RE contributing 50% to the
forecasted demand. The fuzzy used in the optimization problem is
specified as follows:

Min Cost = a94.61+b81+c48.17+d28.09+e25.43+f25.38+g113.59
Min GHG = a2264.55+b602.22+c13+d21+e13+f43+g52

Max RE = (d+e+f+g)*100)/2172304000)

Subject to the constraints;

a+b+c+d+e+f+g= 2172304000

(d+e+f+g*100)/2172304000) = 50 Bounds; 0 <=a, b, ¢, d, e, f, g

The alternative options of this scenario are shown in Table 6.
When comparing this outcome with that of BAU scenario it is clear that
forecasted demand and the energy target of 2030 could be attained at a
lower cost and emission. Out of these 10 alternative option declines of
20.3% in cost and 86.6% in emissions is achievable in first alternative
compared to the BAU scenario.
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Table 6: Alternative Options for Optimization Scenario 3

No cost (1076) ghg (1076) (E/e) coal Gas Nuclear Hydro wind solar biomass
o

1 135967.262 485175.1607 50 48506621.72 548414959.31 489211233.43 395036696.39 95221993.58 201979851.8 393932643.8
2 135967.2621 485175.1606 50 48506621.71 548414959.30 489211234.17 395036696.63 95221993.32 201979851.1 393932643.8
3 135967.2621 485175.16 50 48506621.47 548414959.06 489211234.18 395036696.14 95221994.08 201979850.5 393932644.6
4 136019.8749 487216.6777 50 49011305.87 549974909.42 487146475.77 395939819.6 94941891.12 201634343.2 393655255
5 136064.3761 488943.4411 50 49438179.37 551294353.43 485400053.46 396703703.04 94704973.73 201342104.4 393420632.6
6  136145.9774 492109.7817 50 50220931.26 553713797.26 482197665.24 398104424.58 94270541.43 200806230 392990410.2
7 136187.6935 493728.4805 50 50621090.19 554950667.16 480560538.09 398820502.33 94048451.41 200532280.6 392770470.2
8 136259.5594 496517.0632 50 51310456.50 557081460.83 477740208.10 400054111.76 93665848.6 200060339.5 392391574.7
9 136353.8191 500174.5914 50 52214635.08 559876227.67 474041040.76 401672124.11 93164024.93 199441336.81 391894610.64
10 136353.8193 500174.591 50 52214634.90 559876227.50 474041040.58 401672123.93 93164023.97 199441335.1 391894614
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Choice of Best Solution using TOPSIS Method

TOPSIS an MCDM method is used to select the best option among the
alternatives obtained from the three scenarios. Prior to TOPSIS,
Shannon's entropy method is used to determine the criteria weight.
Weights obtained for the three criteria (i.e., objective functions) of this
study are shown in Table 7. GHG emissions received the highest weight,
followed by the share of RE in electricity generation. The cost factor was
given the least importance. This suggests that it is essential for India to
minimize GHG emissions while planning for long-term electricity demand.

Table 7: Criteria Weights Obtained From Shannon’s Entropy

Method
Criteria Weight
LCOE 0.016749
LCGHG 0.551459
RE share 0.431792

Optimization of the three scenarios resulted in 31 alternative
options, which were subsequently organized into a decision matrix. Then
it was normalized using Equation 13. Criteria weight, obtained from
Shannon's entropy method, were applied to construct weighted
normalized decision matrix. By employing Equations 15 and 16, the ideal
and anti-ideal solutions were identified. Subsequently, Equations 17 and
18 were used to calculate the distance of each alternative from the ideal
and anti-ideal solutions, denoted as S;" and S;, respectively. The relative
closeness of each alternative was determined using Equation 19, denoted
as C;. Finally, all 31 alternatives were ranked based on their relative
closeness values. The alternative with the highest relative closeness
represents the best option to meet the forecasted electricity demand and
energy targets. Result obtained from this TOPSIS analysis is presented
in Table 8. The table shows 31 alternative solutions with their values of
the objective functions, distances from the ideal and anti-ideal solutions,
relative closeness, and ranking.
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Table 8: Result of TOPSIS Analysis with Shannon's Entropy

Weight

Cri- cost (1076)  ghg (1076) re St Sy C; Ra

teria (%) nk
21 105199.911 142533.5719 354 0.028577 0.188657259 0.86844898 1
16 111608.3229 280418.6962 41.3 0.028926 0.167598717 0.852814229 2
13 117168.1702 455821.9826 42.0 0.055349 0.13908966 0.715340043 3
27  135967.2621 485175.16  50.0 0.058094 0.13944734 0.705913241 4
30 135967.2621 485175.1606 50.0 0.058094 0.13944734 0.705913241 5
25 135967.262 485175.1607 50.0 0.058094 0.13944734 0.705913241 6
23 136019.8749 487216.6777 50.0 0.058441 0.139127287 0.704200212 7
28 136064.3761 488943.4411 50.0 0.058733 0.138856675 0.702751791 8
26  136145.9774 492109.7817 50.0  0.05927 0.138360694 0.70009704 9
29 136187.6935 493728.4805 50.0 0.059544 0.138107256 0.698740479 10
31 136259.5594 496517.0632 50.0 0.060017 0.137670839 0.696404454 11
24 136353.8193 500174.591 50.0 0.060637 0.137098797 0.693342371 12
22 136353.8191 500174.5914 50.0 0.060637 0.137098797 0.693342371 13
4 125314.6339 465257.7139 22.9 0.076188 0.132352694 0.634659979 14
8 125314.5784 465335.0624 22.9 0.076198 0.132339581 0.634608344 15
1 125314.4675 465489.7865 22.9 0.076217 0.13231335 0.634505041 16
11 125314.2908 465736.2704 229 0.076247 0.132271562 0.63434043 17
6 125313.93 466239.3531 229 0.076308 0.132186272 0.634004293 18
12 125313.7429 466500.324 22.9 0.07634 0.132142029 0.633829838 19
7 125313.7149 466539.5132 22.9 0.076345 0.132135385 0.633803636 20
2 125313.5782 466730.1167 22.9 0.076368 0.132103071 0.633676177 21
9 125313.4287 466938.6858 22.9 0.076393 0.132067711 0.633536669 22
3 125313.2413 467199.9854 22.9 0.076425 0.132023412 0.633361838 23
10 125313.0946 467404.4729 22.9 0.07645 0.131988744 0.633224978 24
5 125312.5489 468165.5852 22.9 0.076543 0.131859709 0.632715266 25
20 122567.6581 619467.0804 43.3 0.081915 0.113457105 0.580722494 26
18 125036.7135 691823.998 43.9 0.093879 0.102558819 0.522093485 27
19 127021.3697 750538.4289 44.5 0.103634 0.094044899 0.475745742 28
15 130315.9866 846677.5344 45.1 0.119758 0.080460154 0.401862546 29
17  143624.4682 1245931.036 49.1 0.187076 0.051257651 0.215067052 30
14  143624.4681 1245931.036 49.1 0.187076 0.051257651 0.215067051 31

Sensitivity Analysis

Some previous studies®’ have highlighted that the preference ranking
through TOPSIS method is highly sensitive to the criteria weight. Hence
to assess the influence of criteria weights on the ranking, another round
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of TOPSIS analysis was conducted by assigning an equal weight of 0.33
to each of the three criteria. Output of this sensitive analysis is presented
in Table 9.

Table 9: Result of TOPSIS Analysis with Equal Weight

Crit- cost (10°6) ghg (1076) Re (%) St Sy C Ra-
eria nk
16 111608.3229 280418.6962 41.3 0.01933545 0.102798 0.841686 1
21 105199.911 142533.5719 35.4 0.021840502 0.114854 0.840225 2
13 117168.1702 455821.9826 42.0 0.034380297 0.085978 0.714351 3
27 135967.2621 485175.16  50.0 0.037525355 0.087241 0.699235 4
25 135967.262 485175.1607 50.0 0.037525355 0.087241 0.699235 5
30 135967.2621 485175.1606 50.0 0.037525355 0.087241 0.699235 6
23 136019.8749 487216.6777 50.0 0.037726363 0.087057 0.697665 7
28 136064.3761 488943.4411 50.0 0.037896444 0.086901 0.696337 8
26 136145.9774 492109.7817 50.0 0.038208466 0.086616 0.693903 9
29 136187.6935 493728.4805 50.0 0.038368052 0.08647 0.692658 10
31 136259.5594 496517.0632 50.0 0.038643088 0.086219 0.690515 11
24 136353.8193 500174.591 50.0 0.039004041 0.085891 0.687705 12
22 136353.8191 500174.5914 50.0 0.039004041 0.085891 0.687705 13
4 125314.6339 465257.7139 22.9 0.052907337 0.079647 0.600862 14
8 125314.5784 465335.0624 22.9 0.052912189 0.079639 0.600816 15
1 125314.4675 465489.7865 22.9 0.052921897 0.079623 0.600725 16
11 125314.2908 465736.2704 22.9 0.052937368 0.079598 0.60058 17
6 125313.93  466239.3531 22.9 0.052968968 0.079548 0.600284 18
12 125313.7429 466500.324 22.9 0.052985372 0.079521 0.60013 19
7 125313.7149 466539.5132 22.9 0.052987836 0.079517 0.600107 20
2 125313.5782 466730.1167 22.9 0.052999824 0.079498 0.599995 21
9 125313.4287 466938.6858 22.9 0.053012945 0.079477 0.599872 22
3 125313.2413 467199.9854 22.9 0.053029392 0.079451 0.599718 23
10 125313.0946 467404.4729 22.9 0.053042269 0.07943 0.599597 24
5 125312.5489 468165.5852 22.9  0.05309024 0.079353 0.599148 25
20 122567.6581 619467.0804 43.3  0.050053489 0.071154 0.587043 26
18 125036.7135 691823.998 43.9 0.057190943 0.064978 0.531868 27
19 127021.3697 750538.4289 44.5 0.063025885 0.060249 0.488737 28
15 130315.9866 846677.5344 45.1 0.07272764 0.052756 0.420422 29
17 143624.4682 1245931.036 49.1 0.113333411 0.039174 0.256866 30
14 143624.4681 1245931.036 49.1 0.113333411 0.039174 0.256866 31

Shannon's entropy method provided highest weightage to GHG
emission and the lowest to the cost of production. As a result, TOPSIS
with shannon's criteria weight ranked solution with the lowest GHG
emission at the top, it results in cost of US$ 105.19 billion and GHG
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emission of .142 billion tons. Whereas TOPSIS with equal weightage
ranked a solution that results in cost of US$ 111. 6 billion and emission
of .28 billion tons at the top. Therefore, it can be concluded that the
ranking in TOPSIS to some extend is influenced by the criteria weights.

DISCUSSIONS OF THE EMPIRICAL ANALYSIS

Analysis of alternate scenarios indicates that if India continues to be in
BAU scenario, with respect to electricity generation and is not choosing
optimal energy mix, it would incur a cost of 170.632 billion US dollars to
generate the forecasted electricity demand of 2030. This would also
result in the emission of 3.635 billion tons of CO2 equivalent. Output of
one of the optimization scenarios showed that even if India doesn't
expand its renewable energy capacity choice of optimal energy mix could
meet the demand at a lower cost of US $125.31 billion and lower
emission of .47 billion tons of CO: equivalent. This indicates that
optimizing the energy mix alone can reduce the emission and cost
significantly.

The other two scenarios of this study, scenario that analyzed the
case of renewable energy expansion until it reaches to 50% of electricity
demand, and the scenario meant to attain the energy target of 2030,
also showed that forecasted electricity demand can be attained at a lower
cost and emission as compared to BAU scenario.

The TOPSIS method used to identify the best options for meeting
the forecasted electricity demand ranked options from the scenario with
RE expansion (from 22.9% to 50%) at the top. Second ranked
alternatives are from the scenario that meet the energy target of 2030.
This ranking means that if India’s aim is to meet the forecasted demand
of 2030 it can be attained at lower cost but to increase the share of RE
to 50% India has to incur some extra cost. However, comparison of the
scenario attaining 2030 target with BAU scenario showed that expansion
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of renewable to 50% of the electricity demand could reduce the cost of
electricity production by 20% and GHG emission by 86%.

In TOPSIS ranking some solutions from the scenario that
maximizes RE from 22.9% to 50% was ranked at the bottom. This means
that increasing the share of RE without choosing the optimal energy mix
will not reduce the overall cost and emission. Hence alternative energy
mix have to be examined and the best have to be chosen for meeting
the electricity demand at minimum cost and emission.

Overall, the empirical findings consistently demonstrate that RE
expansion could reduce both the cost and the emission. This highlights
the significance of RE as the most viable source for meeting electricity
demand at minimum cost and environmental impact. However, when
considering a massive acceleration of RE it is crucial to consider various
other aspects such as resource availability, infrastructure requirements,
potential impacts on stakeholders, and others.

Furthermore, it is important to note that the results of the
TOPSIS analysis to some extents are sensitive to the chosen criteria
weights. These weights can influence the relative rankings of the
alternatives. Therefore, it is essential to carefully consider and assign
appropriate weights to the criteria to ensure accurate and robust
decision-making.

CONCLUSION

The application of multi-objective optimization and TOPSIS in the energy
sector has proven to be highly valuable for policymakers. It facilitates
effective energy planning, efficient allocation of energy resources, and
optimal selection of energy portfolios, among other benefits. When
applied in the Indian context, this method reveals that a significant
transition to renewable energy would enable India to meet its growing
energy demand while minimizing the impact on climate and the
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environment. Such a transition not only yields environmental advantages
but also reduces the cost of electricity generation due to the advantage
that renewable energy has in the form of technological advancements,
economies of scale, and improved financial options.

Comparing the results of multi-objective optimization for
different scenarios, it becomes evident that the cost of electricity
generation and greenhouse gas emissions in scenarios with optimal
energy mix and with renewable energy expansion is lower than that in
the business-as-usual scenario. This signifies that instead of continuing
with the current energy portfolio, selecting an optimal portfolio with
increased share of renewable energy would enable India to meet the
projected demand at a lower cost and emission. Therefore, it is
recommended for India to identify the optimal energy portfolio to address
its growing energy demand. However, achieving energy-related targets
and facilitating a substantial transition to renewables requires the
adoption of appropriate measures to tackle the challenges associated
with renewable energy, considering factors such as high upfront costs,
infrastructure development, regulatory frameworks, and storage
solutions.
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